综合性问题一.选择题1.(2018·湖南怀化·4分)下列命题是真命题的是()A.两直线平行,同位角相等B.相似三角形的面积比等于相似比C.菱形的对角线相等D.相等的两个角是对顶角【分析】根据平行线的性质、相似三角形的性质、菱形的性质、对顶角的概念判断即可.【解答】解:两直线平行,同位角相等,A是真命题;相似三角形的面积比等于相似比的平方,B是假命题;菱形的对角线互相垂直,不一定相等,C是假命题;相等的两个角不一定是对顶角,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.(2018•江苏苏州•3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3B.2C.6D.12【分析】由tan∠AOD==可设AD=3A.OA=4a,在表示出点D.E的坐标,由反比例函数经过点D.E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3A.OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D.E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D.E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.3.(2018•内蒙古包头市•3分)已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个B.3个C.2个D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.【点评】本题主要考查了命题与定理,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.(2018•山东东营市•3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.5.(2018•遂宁•4分)已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的是()A.①②③B.②③④C.①③④D.①②④【分析】利用全等三角形的性质条件勾股定理求出BF的长,再利用相似三角形的性质求出△BMF的面积即可.【解答】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG,∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=,∴BF=,AF==,故②正确,③错误,∵BM∥AG,∴△FBM∽△FGA,∴=()2,∴S△FBM=,故④正确,故选:D.【点评】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.6.(2018•乌鲁木齐•4分)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示.以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t中正确的有()A.2个B.3个C.4个D.5个【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE.BC.ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.【点评】本题为双动点问题,解答时既要注意两个动点相对位置变化又要注意函数图象的变化与动点位置变化之间的关联.7.(2018•广西玉林•3分)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.8.(2018•广西玉林•3分)圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°【分析】由圆锥的主视图为等边三角形知圆锥的底面圆直径为4.侧面展开图扇形的半径为4,据此利用弧长公式求解可得.【解答】解:∵圆锥的主视图与左视图都是边长为4的等边三角形,∴圆锥的母线长为4.底面圆的直径为4,则圆锥的侧面展开图扇形的半径为4,设圆锥的侧面展开图扇形的圆心角是n,根据题意,得:=4π,解得:n=180°,故选:D.9.(2018•广西贵港•3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A.=()2当a<0不成立,假命题;B.位似图形在位似比为1时全等,假命题;C.正多边形都是轴对称图形,真命题;D.圆锥的主视图一定是等腰三角形,假命题;故选:C.【点评】本题考查的是命题的真假判断,掌握二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念是解题的关键.10.(2018•广西贵港•3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【分析】①根据抛物线的解析式得出抛物线与x轴的交点A.B坐标,由抛物线的对称性即可判定;②求得⊙D的直径AB的长,得出其半径,由圆的面积公式即可判定,③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定.【解答】解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.【点评】本题考查了二次函数的综合问题,解题的关键是掌握抛物线的顶点坐标的求法和对称轴,平行四边形的判定,点是在圆上还是在圆外的判定,切线的判定等.11.(2018•贵州遵义•3分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC.BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5B.4C.3D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题1.(2018·湖北随州·3分)如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是①③④.(写出所有正确判断的序号)【分析】依据AB=AD=5,BC=CD,可得AC是线段BD的垂直平分线,故①正确;依据四边形ABCD的面积S=,故②错误;依据AC=BD,可得顺次连接四边形ABCD的四边中点得到的四边形是正方形,故③正确;当A,B,C,D四点在同一个圆上时,设该圆的半径为r,则r2=(r﹣3)2+42,得r=,故④正确;连接AF,设点F到直线AB的距离为h,由折叠可得,四边