各地2018年中考数学试卷分类汇编 直角三角形与勾股定理(pdf,含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

直角三角形与勾股定理一.选择题1.(2018•江苏淮安•3分)如图,菱形ABCD的对角线AC.BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.48【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【解答】解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=20.故选:A.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.2.(2018•山东东营市•3分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A.C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.3.(2018•湖州•3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EFB.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵BD=DF,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.4.(2018•广西北海•3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为1113151713151719【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值【解析】B.C.D.A.由题意得:Rt△DCP≌Rt△DEP,所以DC=DE=4,CP=EP在Rt△OEF和Rt△OBP中,∠EOF=∠BOP,∠B=∠E,OP=OFRt△OEF≌Rt△OBP(AAS),所以OE=OB,EF=BP设EF为x,则BP=x,DF=DE-EF=4-x,又因为BF=OF+OB=OP+OE=PE=PC,PC=BC-BP=3-x所以,AF=AB-BF=4-(3-x)=1+x在Rt△DAF中,AF2+AD2=DF2,也就是(1+x)2+32=(4-x)233317解之得,x=5,所以EF=5,DF=4-5=5AD15最终,在Rt△DAF中,cos∠ADF=DF=17【点评】本题由题意可知,Rt△DCP≌Rt△DEP并推理出Rt△OEF≌Rt△OBP,寻找出合适的线段设未知数,运用勾股定理列方程求解,并代入求解出所求cos值即可得。5.(2018年湖南省娄底市)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=()A.B.﹣C.D.﹣【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.【解答】解:∵小正方形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC==12,∴sinα==,cosα==,∴sinα﹣cosα=﹣=﹣,故选:D.【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键.6.(2018湖南长沙3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.【点评】此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.二.填空题1.(2018·湖北襄阳·3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为2或2.【分析】分两种情况:①当△ABC是锐角三角形,如图1,②当△ABC是钝角三角形,如图2,分别根据勾股定理计算AC和BC即可.【解答】解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2;综上所述,BC的长为2或2.故答案为:2或2.【点评】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握.2.(2018•江苏徐州•3分)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC,∴BD=CD=a,∴AD==a,面积则是:a•a=a2.【点评】此题主要考查了正三角形的高和面积的求法,比较简单.3.(2018•江苏徐州•3分)如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于7cm.【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【解答】解:在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4.由翻折的性质,得CE=AE.△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7.故答案为:7.【点评】本题考查了翻折的性质,利用了勾股定理,利用翻折的性质得出CE与AE的关系是阶梯关键,又利用了等量代换.4.(2018•江苏无锡•2分)已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于15或10.【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB.AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD.BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【解答】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB.AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB.AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.5.(2018•江苏无锡•2分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是2≤a+2b≤5.【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.【解答】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.6.(2018•江苏淮安•3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A.B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【分析】连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.(2018•江苏苏州•3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为.【分析】由2πr1=、2πr2=知r1=、r2=,据此可得=,利用勾股定理计算可得.【解答】解:∵2πr1=、2πr2=,∴r1=、r2=,∴====,故答案为:.【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理.8.(2018•江苏苏州•3分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功