各地2018年中考数学试卷分类汇编 锐角三角函数与特殊角(pdf,含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

锐角三角函数与特殊角一.选择题1.2018•山东烟台市•3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A.a<bB.a>bC.a=bD.不能比较【分析】由计算器的使用得出A.b的值即可.【解答】解:由计算器知a=(sin30°)﹣4=16.b==12,∴a>b,故选:B.【点评】本题主要考查计算器﹣基础知识,解题的关键是掌握计算器的使用..2(2018•金华、丽水•3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【解析】【解答】解:设AC=x,在Rt△ABC中,AB=.在Rt△ACD中,AD=,则,故答案为:B。【分析】求AB与AD的比,就不必就求AB和AD的具体的长度,不妨设AB=x,用含x的代数式分别表示出AB,AD的长,再求比。3.(2018·黑龙江大庆·3分)2cos60°=()A.1B.C.D.【分析】直接利用特殊角的三角函数值进而计算得出答案.【解答】解:2cos60°=2×=1.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)nmile处,则海岛A,C之间的距离为18nmile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:18【点评】本题考查的是解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.2.(2018•江苏宿迁•3分)如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【答案】+π【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°,∴cos60°=,∴AB=2,OB=,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积:S==π,故答案为:π.【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.3.(2018•广西北海•3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°.已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)。【答案】40【考点】三角函数【解析】∵俯角是45!,BDA45!,ABAD=120m,又∵CAD30!,在Rt△ADC中tan∠CDA=tan30°=CD=3,AD3CD=403(m)【点评】学会应用三角函数解决实际问题。三.解答题1.(2018·湖北襄阳·6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).【分析】作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值求解.【解答】解:过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,,∴AC=PC,在Rt△PBC中,,∴BC=PC,∵AB=AC+BC=,∴PC=100,答:建筑物P到赛道AB的距离为100米.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.2.(2018•江苏宿迁•8分)计算:【答案】5【详解】原式=4-1+(2-)+2×,=4-1+2-+,=5.【点睛】本题考查了实数的混合运算,熟练掌握实数的混合运算顺序、特殊角的三角函数值是解题的关键.3.(2018•江苏淮安•10分)(1)计算:2sin45°+(π﹣1)0﹣+|﹣2|;(2)解不等式组:【分析】(1)先代入三角函数值、计算零指数幂、化简二次根式、去绝对值符号,再计算乘法和加减运算可得;(2)先求出各不等式的解集,再求其公共解集即可.【解答】解:(1)原式=2×+1﹣3+2=+1﹣=1;(2)解不等式3x﹣5<x+1,得:x<3,解不等式2x﹣1≥,得:x≥1,则不等式组的解集为1≤x<3.【点评】本题主要考查解一元一次不等式组和实数的运算,解题的关键是掌握解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了及实数的混合运算顺序和运算法则.4.(2018•江苏淮安•12分)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A.B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是(4,0);(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【解答】解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);故答案为(4,0);(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2的对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,易知,OH=2,∵OA=6,AH==2,∴S△AOH=OH×OA=AH×OG,∴OG=,∴OO'=在Rt△AOH中,sin∠OHA===,∵∠HOG+∠AOG=90°,∠HOG+∠OHA=90°,∴∠AOG=∠OHA,在Rt△OFO'中,O'F=OO'sin∠O'OF=×=,即:OT+PT的最小值为.【点评】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点.5.(2018•金华、丽水•8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.【解析】【分析】(1)证明切线时,第一步一般将圆心与切点连结起来,证明该半径和该直线垂直即可证得;此题即证∠ADO=90°;(2)直接求半径会没有头绪,先根据题中的条件,求出相关结论,由BC=8,tanB=不难得出AC,AB的长度;而tan∠1=tanB=,同样可求出CD,AD的长度;设半径为r,在Rt△ADO中,由勾股定理构造方程解出半径r即可。6.(2018•广东•9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.EOABDC(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=A.则AC=2A.AD=AB==,证OE为中位线知OE=A.AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=A.则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2.BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.7.(2018•广西贵港•8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功