各地2018年中考数学试卷分类汇编 动态问题专题(pdf,含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

动态问题专题一.选择题1.(2018•山东烟台市•3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C.D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C.D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.【点评】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.2.(2018•广西玉林•3分)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.3.(2018•广西桂林•3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.【答案】A【解析】分析:分两种情形:当A与点N、M重合时来确定b的最大与最小值即可.详解:如图1,当点A与点N重合时,CA⊥AB,∴MN是直线AB的一部分,∵N(3,1)∴OB=1,此时b=1;当点A与点M重合时,如图2,延长NM交y轴于点D,易证△ACN∽△BMD∴∵MN=3-=,DM=,CN=1∴BD=∴OB=BD-OD=-1=,即b=-,∴b的取值范围是.故选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..4.(2018•广东•3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.5.(2018•广东•3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二.填空题【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.1.(2018•江苏无锡•2分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是2≤a+2b≤5.【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.【解答】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.2.(2018•达州•3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为.【分析】过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.【解答】解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC﹣CE=CF﹣CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=﹣=2.故答案为2.【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.3.(2018•杭州•4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。【答案】或3【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】∵当点H在线段AE上时把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上∴四边形ADFE是正方形∴AD=AE∵AH=AE-EH=AD-1∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上∴DC=DH=AB=AD+2在Rt△ADH中,AD2+AH2=DH2∴AD2+(AD-1)2=(AD+2)2解之:AD=3+2,AD=3-2(舍去)∴AD=3+2当点H在线段BE上时则AH=AE-EH=AD+1在Rt△ADH中,AD2+AH2=DH2∴AD2+(AD+1)2=(AD+2)2解之:AD=3,AD=-1(舍去)故答案为:或3【分析】分两种情况:当点H在线段AE上;当点H在线段BE上。根据①的折叠,可得出四边形ADFE是正方形,根据正方形的性质可得出AD=AE,从而可得出AH=AD-1(或AH=AD+1),再根据②的折叠可得出DH=AD+2,然后根据勾股定理求出AD的长。4.(2018•嘉兴•4分.)如图,在矩形中,,,点在上,,点是边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是________.【答案】0或或4【解析】【分析】在点F的运动过程中分别以EF为直径作圆,观察圆和矩形矩形边的交点个数即可得到结论.【解答】当点F与点A重合时,以为斜边恰好有两个,符合题意.当点F从点A向点B运动时,当时,共有4个点P使是以为斜边.当时,有1个点P使是以为斜边.当时,有2个点P使是以为斜边.当时,有3个点P使是以为斜边.当时,有4个点P使是以为斜边.当点F与点B重合时,以为斜边恰好有两个,符合题意.故答案为:0或或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.三.解答题1.(2018•江苏宿迁•12分)如图,在边长为1的正方形ABCD中,动点E.F分别在边AB.CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A.D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM=时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.【分析】(1)由折叠性质可知BE=ME=x,结合已知条件知AE=1-x,在Rt△AME中,根据勾股定理得(1-x)2+=x2,解得:x=.(2)△PDM的周长不会发生变化,且为定值2.连接BM、BP,过点B作BH⊥MN,根据折叠性质知BE=ME,由等边对等角得∠EBM=∠EMB,由等角的余角相等得∠MBC=∠BMN,由全等三角形的判定AAS得Rt△AB

1 / 38
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功