1解一元一次方程(习题)巩固练习1.下列是一元一次方程的是()A.23x+B.32143xy+−−=C.2560xx−+=D.27(3)32xx+−=−2.把方程12432xx+−−=变形为2(1)243(2)xx+−=−的依据是()A.乘法法则B.分数的基本性质C.等式的基本性质D.移项法则3.把方程0.170.210.70.03xx−−=中的分母化为整数,正确的是()A.172173xx−−=B.10172173xx−−=C.1017201073xx−−=D.101720173xx−−=4.下列变形正确的是()A.4532xx−=+移项得4325xx−=−+B.211332xx−=+去分母得46318xx−=+C.3(1)2(3)xx−=+去括号得3126xx−=+D.3223x−=系数化为1得1x=−5.方程1273422−=−−xx去分母得()A.)7()42(42−−=−−xxB.7)42(24−=−−xxC.)7()42(424−−=−−xxD.7)42(424−=−−xx6.当a=______时,关于x的方程41210ax−+=是一元一次方程.7.若2是关于x的方程21xa−=的解,则a=_______.8.若关于x的方程24(1)2xmx+=−的解是3x=,则m=______.9.若代数式415+m与154m−的值互为相反数,则m=______.10.当x=___________时,单项式2125xab+与428xab+是同类项.211.在梯形面积公式1()2Sabh=+中,若S=24,b=5,h=4,则a=_________.12.解方程:(1)12(23)3(21)xx−+=−+;(2)2(2)3(41)9(1)xxx−−−=−;(3)421134yy−+−=;(4)22223xxx−−−=+;3(5)2125671236yyy−+−−=−;(6)31.5211.210.30.50.2xxx−−−−=+;(7)1.42.110.70.2xxx−−−=.4思考小结1.把方程0.170.210.70.03xx−−=变形为101720173xx−−=的依据是()A.乘法法则B.分数的基本性质C.等式的基本性质D.移项法则2.阅读下面解方程的过程211012113644(21)2(101)3(21)18420163182063141800xxxxxxxxxxxxxx−+−−=−−−+=−−−−−=−−−−=−−+−==()()()()()解:第一步第二步第三步第四步第五步请回答:上面的解题过程中出现了3处错误,第1处是第______步,错误的原因是______________________________;第2处是第_____步,错误的原因是____________________;第3处是第_____步,错误的原因是____________________.5【参考答案】巩固练习1.D2.C3.D4.B5.D6.127.128.109.11010.311.712.(1)x=1;(2)x=−10;(3)y=110;(4)x=2;(5)y=0;(6)1011x=;(7)12x=.思考小结1.B2.一,去分母要乘以每一项;二,去括号没有乘以每一项;三,移项后项数应不变.