X射线:波长很短的电磁波特征X射线:是具有特定波长的X射线,也称单色X射线。连续X射线:是具有连续变化波长的X射线,也称多色X射线。荧光X射线:当入射的X射线光量子的能量足够大时,可以将原子内层电子击出,被打掉了内层的受激原子将发生外层电子向内层跃迁的过程,同时辐射出波长严格一定的特征X射线二次特征辐射:利用X射线激发作用而产生的新的特征谱线Ka辐射:电子由L层向K层跃迁辐射出的K系特征谱线相干辐射:X射线通过物质时在入射电场的作用下,物质原子中的电子将被迫围绕其平衡位置振动,同时向四周辐射出与入射X射线波长相同的散射X射线,称之为经典散射。由于散射波与入射波的频率或波长相同,位相差恒定,在同一方向上各散射波符合相干条件,称为相干散射非相干辐射:散射位相与入射波位相之间不存在固定关系,故这种散射是不相干的俄歇电子:原子中一个K层电子被激发出以后,L层的一个电子跃迁入K层填补空白,剩下的能量不是以辐射原子散射因子:为评价原子散射本领引入系数f(f≤E),称系数f为原子散射因子。他是考虑了各个电子散射波的位相差之后原子中所有电子散射波合成的结果结构因子:定量表征原子排布以及原子种类对衍射强度影响规律的参数,即晶体结构对衍射强度的影响多重性因素:同一晶面族{hkl}中的等同晶面数系统消光:原子在晶体中位置不同或种类不同引起某些方向上衍射线消失的现象吸收限1x射线的定义性质连续X射线和特征X射线的产生X射线是一种波长很短的电磁波X射线能使气体电离,使照相底片感光,能穿过不透明的物体,还能使荧光物质发出荧光。呈直线传播,在电场和磁场中不发生偏转;当穿过物体时仅部分被散射。对动物有机体能产生巨大的生理上的影响,能杀伤生物细胞。连续X射线根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X射线谱。特征X射线处于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。2x射线方向理论布拉格方程和艾瓦尔德图解3试述解决X射线衍射方向问题常用方法有哪些并进行比较4简述材料研究X射线试验方法在材料研究中的主要应用精确测定晶体的点阵常数物相分析宏观应力测定测定单晶体位相测定多晶的织够问题5试推导布拉格方程,解释方程中各符号的意义并说明布拉格方程的应用假设:1)晶体视为许多相互平行且d相等的原子面2)X射线可照射各原子面3)入射线、反射线均视为平行光一束波长为λ的平行X射线以θ照射晶体中晶面指数为(hkl)的各原子面,各原子面产生反射。当Ⅹ射线照射到晶体上时,考虑一层原子面上散射Ⅹ射线的干涉。当Ⅹ射线以θ角入射到原子面并以θ角散射时,相距为a的两原子散射x射的光程差为:即是说,当入射角与散射角相等时,一层原子面上所有散射波干涉将会加强。与可见光的反射定律相类似,Ⅹ射线从一层原子面呈镜面反射的方向,就是散射线干涉加强的方向,因此,常将这种散射称从晶面反射。x射线有强的穿透能力,在x射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。这里任取两相邻原子面的散射波的干涉来讨论。过D点分别向入射线和反射线作垂线,则AD之前和CD之后两束射线的光程相同,它们的程差为=AB+BC=2dsinθ。当光程差等于波长的整数倍时,相邻原子面散射波干涉加强,即干涉加强条件为:ndsin2——布拉格方程n为反射级数其中d:晶面间距θ:入射线与晶面的夹角n:为整数,称为反射级数λ:波长布拉格方程是X射线衍射分布中最重要的基础公式,它形式简单,能够说明衍射的基本关系,所以应用非常广泛。从实验角度可归结为两方面的应用:布拉格方程的应用:利用已知波长的特征X射线,通过测量θ角,可以计算出晶面间距d,分析结构。利用已知晶面间距d的晶体,通过测量θ角,从而计算出未知X射线的波长6X射线衍射试验有哪些方法,他们各有哪些应用劳埃法:用于多晶取向测定和晶体对称性的研究周转晶体法:可确定晶体在旋转轴方向上的点阵周期,通过多个方向上点阵周期的测定,久可以确定晶体的结构粉末多晶法:主要用于测定晶体结构,进行物相分析,定量分析,精确测定晶体的点阵参数以及材料的应力结构,晶粒大小的测定等7试写出晶包的结构因子式,计算体心面心晶胞的F和F绝对值的平方的值,并说明哪些晶面能产生衍射8终结简单点阵、体心点阵、面心点阵衍射线的系统消光规律简单点阵:该种点阵其结构因数与hkl无关,即hkl为任意整数时均能产生衍射体心点阵:当h+k+l=奇数时,F=0,即该晶面的散射强度为0,这些晶面的衍射不可能出现。当h+k+l=偶DACB数时,F=2f即体心点阵只有指数之和为偶数的晶面可产生衍射面心点阵:当hkl全为奇数或全为偶数时,F=4f当hkl为奇偶混杂时F=09X射线衍射进行物像定性分析和定量分析的依据是啥,x射线粉末衍射法物像定性分析过程。X射线粉末衍射仪法物相定量分析方法定性分析依据:任何一种物质都具有特定的晶体结构。在一定波长的X射线照射下,每种晶体物质都给出自己特有的衍射花样,每一种物质和他的衍射花样都是一一对应的,不可能有两种物质给出完全相同的衍射花样。如果在试样中存在两种以上不同结构的物质时,每种物质所特有的花样不变,多相试样的衍射花样只是由他所含物质的衍射花样机械叠加而成分析过程:1通过试验获得衍射花样2计算面间距d值和测定相对强度I/I1(I1为最强线的强度)值定性分析以2θ<90的衍射线为最要依据定量分析依据:各相的衍射线强度随该相含量的增加而提高,由于各物相对X射线的吸收不同,使得“强度”并不正比于“含量”,而需加以修正方法:外标发内标发K值发直接比较法10CuKa射线(λg。=0.154nm)照射Cu样品。以知Cu的点阵常数a=0.361nm试分别用布拉格方程与艾瓦尔德图解法求其(111)晶面反射的θ角11CuKa(λg。=0.154nm)辐射照射Ag(fcc)样品,测得第一衍射峰位置2θ=38,求Ag的点阵常数分辨率:是指成像物体上能分辨出的两个物点的最小距离明场像:用另外的装置来移动物镜光阑,使得只有未散射的透射电子束通过他,其他衍射的电子束被光阑挡掉,由此得到的图像暗场像:或是只有衍射电子束通过物镜光阑,投射电子束被光阑挡掉,由此得到的图像景深:是指当成像时,像平面不动,在满足成像清晰的前提下,物平面沿轴线前后可移动的距离焦长:焦长是指物点固定不变(物距不变),在保持成像清晰的条件下,像平面沿透镜轴线可移动的距离。像差:由于透镜几何形状和电磁波波长变化对电磁透镜聚焦能力不一样造成的图像差异等厚干涉条纹:在电镜下我们会看到整个楔形晶体是亮暗相间的条纹,这些条纹很像地图上的等高线,每一条纹对应晶体的相等厚度区域所以叫等厚干涉条纹弯曲消光条纹:当样品厚度一定时,衍射束强度随样品内反射面相对布拉格位置偏移矢量S变化而呈周期摆动,相应的投射束强度按相反周期摆动,摆动周期为1/T,因而在电镜内显示出相应的条纹。衬度:像平面上各像点强度的差别质厚衬度:样品上的不同微区无论是质量还是厚度的差别,均可引起相应区域投射电子强度的改变,从而在图像上形成亮暗不同的区域这一现象叫质厚衬度效应双束近似:假定电子束透过晶体试样成像时,除投射束外只存在一束较强的衍射束,而其他衍射束则大大偏离布拉格条件,他们的强度都可以视为零衍射衬度:把薄晶体下表面上每点的衬度和晶柱结构对应起来的处理方法称柱体近似消光距离:表示在精确符合布拉格条件时透射波与衍射波之间能量交换或强度振荡的深度周期。1投射电子显微镜的成像原理为啥是小孔成像成像原理:电子枪发射的电子束在阳极加速电压作用下加速,经聚光镜会聚成平行电子束照明样品,穿过样品的电子束携带样品本身的结构信息,经物镜、中间镜、投影镜接力聚焦放大,以图像或衍射谱形式显示于荧光屏。因为:1.小孔成像可以减小球差,像散,色差对分变率的影响,达到提高分辨率的目的。2.正是由于α很小,电子显微镜的景深和焦长都很大,对图像的聚焦操作和图像的照相记录带来了方便。2比较光学和透射电子显微镜成像的异同不同点1光镜用可见光作照明束,电镜以电子束作照明束。2光镜用玻璃透镜,电镜用电磁透镜。3光镜对组成相形貌分析,电镜兼有组成相形貌和结构分析相同点成像原理相似3为啥透射电镜的样品要求非常薄而扫描电镜没有此要求透射电子显微镜成像时,电子束是透过样品成像。由于电子束的穿透能力比较低,用于透射电子显微镜分析的样品必须很薄。由于扫描电镜是依靠高能电子束与样品物质的交互作用,产生了各种信息:二次电子、背散射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电于等。且这些信息产生的深度不同,故对厚度无明确要求4式述薄晶样品的衍射衬度形成原理并画出明场像暗场像中心暗场像形成的示意图薄膜样品,在微小区域样品厚度大致均匀,平均原子序数差别不大,薄膜上不同部位对电子的散射或吸收将大致相同,不能用质厚衬度获得图像衬度。薄晶体样品在电子束照射下,严格满足布拉格条件的晶面产生强衍射束,不严格满足布拉格条件的晶面产生弱衍射束,不满足布拉格条件的晶面不产生衍射束,如果只让透射束通过物镜光阑成像,则因样品中各晶面或强衍射束或弱衍射束或不衍射,导致透射束强度相应变化,在荧光屏上形成衬度。在形成衬度过程中,起决定作用的是晶体对电子束的衍射。影响衍射强度的主要因素是晶体取向和结构振幅,对无成分差异的单相材料,衍射衬度由样品各处满足布拉格条件程度的差异(晶体取向)造成的。称由于样品中不同晶体(或同一晶体不同位向)衍射条件不同而造成的衬度差别叫衍射衬度明场像中心暗场像5与X射线相比(尤其透射电镜中的)电子衍射的特点X射线衍射相同点:满足衍射的必要和充分条件,可借助倒易点阵和厄瓦德图解不同点:波长λ长,试样是大块粉末1.要精确满足布拉格条件2.衍射角可以很大3.衍射强度弱,暴光时间长电子衍射相同点:满足衍射的必要和充分条件,可借助倒易点阵和厄瓦德图解不同点:波长λ短,试样是薄片1.倒易点变成倒易杆2.不要精确满足布拉格条件3.衍射角很小4.衍射强度强,暴光时间短6画出透射电子显微镜的光路示意图并说明样品图像和衍射图像差别:主要差别是中间镜的放置为址不同。如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,在荧光屏上得到样品的图像。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,即得到衍射图像。注:右为电子显微镜的光路示意图8说明影响光学显微镜和电磁透镜分辨率的关键因数是啥如何提高电磁透镜的分辨率衍射效应是影响两者分辨率的共同因素,而后者还受到像差的影响。提高方法:1.提高加速电压,使电子波长减小,达到使艾利斑减小的目的,从而提高分辨率。2.适当提高孔径半角,而提高分辨率:3.运用适当的矫正器来减小像差对分辨率的影响。9式比较说明复型样品和金属薄膜样品在透射电镜中的形成图像衬度原理以下是质厚衬度形成的原理(复型样品),与第四题的衍射衬度综合比较一下就是答案。质厚衬度建立在非晶体样品中原子对入射电子的散射和透射电镜小孔径角成像的基础上,是解释非晶体样品电镜图像衬度的理论依据。1、原子对入射电子的散射原子核对入射电子的散射:原子核对入射电子的散射,引起电子改变运动方向,而能量没有变化的散射,是弹性散射。散射能力可用来描述。2、小孔径角成像物镜背焦面上沿径向插入一小孔径物镜光阑。物镜孔径半角a明场象:直射束成像。暗场象:散射束成像。散射角大于a的电子被光阑挡掉,只允许散射角小于a的电子通过物镜光阑参与成像。在明场象时,Z高或样品较厚的区域在荧光屏上显示为较暗的区域,反之,Z低或样品较薄的区域在荧光屏上显示为较亮的区域。暗场象反之。于是