2020年高考数学一轮复习 考点24 平面向量的概念及其线性运算必刷题 理(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1考点24平面向量的概念及其线性运算1.(2019届四川省乐山市高三第一次调查研究考试理)已知向量(1,3)BA,向量,则ABC的形状为()A.等腰直角三角形B.等边三角形C.直角非等腰三角形D.等腰非直角三角形【答案】A【解析】画出图像如下图所示,由图可知满足勾股定理,故为等腰直角三角形.2.(北京市昌平区2019届高三5月综合练习二模理)设,ab是非零向量,则“存在实数,使得ab”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】存在实数,使得ab,说明向量,ab共线,当,ab同向时,成立,当,ab反向时,不成立,所以,充分性不成立.当成立时,有,ab同向,存在实数,使得ab成立,必要性成立,2即“存在实数,使得ab”是“”的必要而不充分条件.故选:B.3.(黑龙江省哈尔滨市第六中学2019届高三第二次模拟考试理)已知向量(,2)am,(1,1)b,若,则实数m()A.2B.-2C.12D.12【答案】A【解析】根据题意,向量a(m,2),b(1,1),则ab(m+1,3),则|ab|,|a|24m,|b|2,若|ab|=|a|+|b|,则有,两式平方得到再平方得到解可得:m=2;故答案为:A.4.(河北省唐山市第一中学2019届高三下学期冲刺一理)已知等边三角形ABC中,D是线段AC的中点,DEAB,垂足为,EF是线段BD的中点,则DE()A.B.C.D.【答案】C【解析】∵F是线段BD的中点,∴CF==;∵D是线段AC的中点,∴BD=;3又=;令,则- 4BA=(,∴1424,,解得34,18,∴,故选C.5.(四川省内江、眉山等六市2019届高三第二次诊断性考试)已知平面向量的夹角为,且,则与的夹角是()A.B.C.D.【答案】D【解析】设与的夹角为,由向量夹角公式得,所以选D项.6.(2019年3月2019届高三第一次全国大联考理)已知平面向量,均为单位向量,若向量,的夹角为,则A.25B.7C.5D.【答案】D【解析】因为,且向量,的夹角为,4所以,所以.本题选择D选项.7.(山东省师大附中2019届高三上学期第二次模拟考试数学理)设是非零向量,则是成立的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【答案】B【解析】由可知:方向相同,表示方向上的单位向量所以成立;反之不成立.故选B.8.(2019学年唐山市度高三年级第一次模拟考试)在ABC△中,90B,,,则()A.1B.1C.32D.4【答案】A【解析】由题ABC△中,又即解得1.故选A.9.(广东省深圳市高级中学2019届高三适应性考试6月)在平行四边形ABCD中,若则ADC()A.56B.34C.23D.2【答案】C【解析】5如图所示,平行四边形ABCD中,,,,,因为,所以,,所以,故选C.10.(辽宁省丹东市2019届高三总复习质量测试理科)在ABC中,,,若,则()A.3yxB.3xyC.3yxD.3xy【答案】D【解析】因为,所以点D是BC的中点,又因为,所以点E是AD的中点,所以有:6,因此,故本题选D.11.(江西省名校(临川一中、南昌二中)2019届高三5月联合考试)在△ABC中,,则()A.1-3B.13C.1-2D.12【答案】A【解析】因为所以P为ABC的重心,所以,所以,所以因为,所以故选:A.12.(河南省新乡市2019届高三第三次模拟测试理科)设向量12,ee是平面内的一组基底,若向量与12bee共线,则()A.13B.13C.3D.3【答案】B【解析】因为a与b共线,所以存在R,使得ab,7即,故3,1,解得13.13.(四川省雅安市2019届高三第三次诊断考试)定义域为[],ab的函数()yfx图像的两个端点为A、B,向量,(,)Mxy是()fx图像上任意一点,其中,若不等式MNk恒成立,则称函数()fx在[],ab上满足“k范围线性近似”,其中最小正实数k称为该函数的线性近似阈值.若函数2yx定义在[1,2]上,则该函数的线性近似阈值是()A.22B.C.322D.22【答案】B【解析】作出函数2yx图像,它的图象在1,2上的两端点分别为:1,2A,2,1B所以直线AB的方程为:设,Mxy是曲线2yx上的一点,1,2x,其中由,可知,,ABN三点共线,所以N点的坐标满足直线AB的方程,又1,2OA,2,1OB,则所以,MN两点的横坐标相等.8故函数2yx在1,2上满足“k范围线性近似”所以x1,2时,恒成立.即:恒成立.记,整理得:,x1,2,当且仅当2x时,等号成立。当1x时,所以,所以.即:322k所以该函数的线性近似阈值是:故选:B.14.(江西省上饶市重点中学六校2019届高三第二次联考理)过ABC的重心G作直线l,已知l与AB、AC的交点分别为M、N,209ABCAMNSS,若AMAB,则实数的值为()A.23或25B.34或35C.34或25D.23或35【答案】B【解析】设ANxAC,因为G为ABC的重心,所以,即.由于,,MNG三点共线,所以11133x,即31x.9因为209ABCAMNSS,,所以,即有220931,解之得34或35.故选B.15.(陕西省宝鸡市2019届高考模拟检测三数学理)双曲线的左右焦点为,,渐近线分别为,,过点且与垂直的直线分别交及于,两点,若满足,则双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】由得P是的中点,又因为,所以,因为,所以,因为在一条直线上,所以,所以双曲线的渐近线方程为.故选:C.16.(湖北省黄冈市2019届高三2月联考)已知向量a与b方向相同,,2b,则2ab___________。【答案】2.【解析】∵,∴22a,∵a与b方向相同,且2b,∴2ab,10∴.故答案为:2.17.(安徽省蚌埠市2019届高三年级第三次教学质量检查考试数学理)已知向量,,若,则的值为__________.【答案】2【解析】因为,,所以因为,所以有.18.(广东省广州市2019届高三第二次模拟考试)若1e,2e是夹角为60的两个单位向量,向量122aee,则||a________.【答案】7【解析】1212ee,22121ee;∴;∴7a.故答案为:7.19.(山东省济南市2019届高三3月模拟考试理)已知平面向量,满足,,,则与夹角的余弦值为_________.【答案】【解析】,即设之间的夹角为,则.1120.(安徽省马鞍山市2019届高三高考一模理)已知向量,单位向量满足,则向量的坐标为______.【答案】或【解析】设向量,则,又,则,,即,联立,解得或;则向量的坐标为或故答案为:或21.(福建省漳州市2019届高三第一次教学质量检查测试理)平面向量与的夹角为,,,则__________.【答案】【解析】因为平面向量与的夹角为,所以,所以;故答案为.22.(2019届四川省乐山市高三第一次调查研究考试理)在三角形ABC中,点,EF满足12AEAB,2CFFA,若,则xy__________.【答案】16xy【解析】12依题意有,所以,所以16xy.23.(河南省郑州市2019届高三第三次质量检测数学理)已知向量1,a,,2b,若,则__________.【答案】2.【解析】因为向量1,a,,2b,所以又因为所以故答案为2.24.(安徽省江淮十校2019届高三年级5月考前最后一卷数学理)在ABC中,,已知BC边上的中线3AD,则ABC面积的最大值为__________.【答案】93.【解析】在△ABC中,,BC边上的中线AD=3,,设AB=c,AC=b,平方可得9=.化简可得,,∴bc≤36,当且仅当bc时成立,故△ABC的面积S=故答案为:931325.(四川省绵阳市2019届高三下学期第三次诊断性考试理)已知向量a=(sin2α,1),b=(cosα,1),若a∥b,π02α,则______.【答案】6【解析】向量a=(sin2α,1),b=(cosα,1),若a∥b,则sin2αcosα=0,即2sinαcosα=cosα;又π02α,∴cosα≠0,∴sinα=12,∴6.故答案为:6.26.(贵州省贵阳市2019年高三5月适应性考试(二)理)圆与曲线相交于,,,四点,为坐标原点,则__________.【答案】.【解析】∵圆的圆心为M(-3,2),∴圆关于M(-3,2)中心对称,又曲线,关于(-3,2)中心对称,∴圆与曲线的交点关于(-3,2)中心对称,不妨设与,与关于(-3,2)中心对称,则,,∴,故答案为..14

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功