1§1.3简单的逻辑联结词、全称量词与存在量词最新考纲考情考向分析1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词和存在量词的意义.3.能正确地对含一个量词的命题进行否定.逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为选择、填空题,低档难度.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断pqp且qp或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x∈M,綈p(x)存在性命题存在M中的一个x,使p(x)成立∃x∈M,p(x)∀x∈M,綈p(x)概念方法微思考2含有逻辑联结词的命题的真假有什么规律?提示p∨q:一真即真;p∧q:一假即假;p,綈p:真假相反.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)“全等三角形的面积相等”是存在性命题.(×)(4)命题綈(p∧q)是假命题,则命题p,q都是真命题.(×)题组二教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1B.2C.3D.4答案B解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.命题“正方形都是矩形”的否定是_________________________.答案存在一个正方形,这个正方形不是矩形题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件,故选A.5.(2018·大连质检)命题“∃x∈R,x2-x-10”的否定是()A.∀x∈R,x2-x-1≤0B.∀x∈R,x2-x-10C.∃x∈R,x2-x-1≤0D.∃x∈R,x2-x-1≥0答案A6.若“∀x∈0,π4,tanx≤m”是真命题,则实数m的最小值为________.答案1解析∵函数y=tanx在0,π4上是增函数,∴ymax=tanπ4=1.依题意知,m≥ymax,即m≥1.3∴m的最小值为1.题型一含有逻辑联结词的命题的真假判断1.命题p:若sinxsiny,则xy;命题q:x2+y2≥2xy.下列命题为假命题的是()A.p或qB.p且qC.qD.綈p答案B解析取x=π3,y=5π6,可知命题p是假命题;由(x-y)2≥0恒成立,可知命题q是真命题,故綈p为真命题,p或q是真命题,p且q是假命题.2.已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2b2,则ab.下列命题为真命题的是()A.p∧qB.p∧(綈q)C.(綈p)∧qD.(綈p)∧(綈q)答案B解析∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×10,∴x2-x+10恒成立,∴p为真命题,綈p为假命题.∵当a=-1,b=-2时,(-1)2(-2)2,但-1-2,∴q为假命题,綈q为真命题.根据真值表可知p∧(綈q)为真命题,p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题.故选B.3.已知命题p:∃x∈R,使sinx=52;命题q:∀x∈R,都有x2+x+10.给出下列结论:①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题,其中正确的是_____.(把所有正确结论的序号都填上)答案②③解析因为对任意实数x,|sinx|≤1,而521,所以p为假;因为x2+x+1=0的判别式Δ0,所以q为真.故②③正确.思维升华“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p,q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二含有一个量词的命题4命题点1全称命题、存在性命题的真假例1(1)(2018·沈阳模拟)下列四个命题中真命题是()A.∀n∈R,n2≥nB.∃n∈R,∀m∈R,m·n=mC.∀n∈R,∃m∈R,m2nD.∀n∈R,n2n答案B解析对于选项A,令n=12,即可验证其不正确;对于选项C,D,可令n=-1加以验证,均不正确,故选B.(2)下列命题中的假命题是()A.∀x∈R,2x-10B.∀x∈N+,(x-1)20C.∃x∈R,lgx1D.∃x∈R,tanx=2答案B解析当x∈N+时,x-1∈N,可得(x-1)2≥0,当且仅当x=1时取等号,故B不正确;易知A,C,D正确,故选B.命题点2含一个量词的命题的否定例2(1)已知命题p:“∃x∈R,ex-x-1≤0”,则綈p为()A.∃x∈R,ex-x-1≥0B.∃x∈R,ex-x-10C.∀x∈R,ex-x-10D.∀x∈R,ex-x-1≥0答案C解析根据全称命题与存在性命题的否定关系,可得綈p为“∀x∈R,ex-x-10”,故选C.(2)(2018·福州质检)已知命题p:∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≥0,则綈p是()A.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0B.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)≤0C.∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)0D.∀x1,x2∈R,[f(x2)-f(x1)](x2-x1)0答案C解析已知全称命题p:∀x1,x2∈R,[f(x2)-f(x1)]·(x2-x1)≥0,则綈p:∃x1,x2∈R,[f(x2)-f(x1)](x2-x1)0,故选C.思维升华(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,5证明p(x)成立;要判断存在性命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.(2)对全称(存在性)命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.跟踪训练1(1)(2018·东北三校联考)下列命题中是假命题的是()A.∃x∈R,log2x=0B.∃x∈R,cosx=1C.∀x∈R,x20D.∀x∈R,2x0答案C解析因为log21=0,cos0=1,所以选项A,B均为真命题,02=0,选项C为假命题,2x0,选项D为真命题,故选C.(2)已知命题p:∃x∈R,log2(3x+1)≤0,则()A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)0答案B解析因为3x0,所以3x+11,则log2(3x+1)0,所以p是假命题;綈p:∀x∈R,log2(3x+1)0.故选B.题型三命题中参数的取值范围例3(1)(2018·包头质检)已知命题p:“∀x∈[0,1],a≥ex”;命题q:“∃x∈R,使得x2+4x+a=0”.若命题“p∧q”是真命题,则实数a的取值范围为____________.答案[e,4]解析若命题“p∧q”是真命题,那么命题p,q都是真命题.由∀x∈[0,1],a≥ex,得a≥e;由∃x∈R,使x2+4x+a=0,得Δ=16-4a≥0,则a≤4,因此e≤a≤4.则实数a的取值范围为[e,4].(2)已知f(x)=ln(x2+1),g(x)=12x-m,若对∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.答案14,+∞解析当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=14-m,由f(x)min≥g(x)min,6得0≥14-m,所以m≥14.引申探究本例(2)中,若将“∃x2∈[1,2]”改为“∀x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.答案12,+∞解析当x∈[1,2]时,g(x)max=g(1)=12-m,由f(x)min≥g(x)max,得0≥12-m,∴m≥12.思维升华(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练2(1)已知命题“∀x∈R,x2-5x+152a0”的否定为假命题,则实数a的取值范围是______________.答案56,+∞解析由“∀x∈R,x2-5x+152a0”的否定为假命题,可知原命题必为真命题,即不等式x2-5x+152a0对任意实数x恒成立.设f(x)=x2-5x+152a,则其图象恒在x轴的上方.故Δ=25-4×152a0,解得a56,即实数a的取值范围为56,+∞.(2)已知c0,且c≠1,设命题p:函数y=cx为减函数.命题q:当x∈12,2时,函数f(x)=x+1x1c恒成立.如果“p∨q”为真命题,“p∧q”为假命题,则c的取值范围为________.答案0,12∪(1,+∞)7解析由命题p为真知,0c1,由命题q为真知,2≤x+1x≤52,要使x+1x1c恒成立,需1c2,即c12,若“p∨q”为真命题,“p∧q”为假命题,则p,q中必有一真一假,当p真q假时,c的取值范围是0c≤12;当p假q真时,c的取值范围是c1.综上可知,c的取值范围是0,12∪(1,+∞).常用逻辑用语有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.一、命题的真假判断例1(1)下列命题的否定为假命题的是________.(填序号)①∀x∈R,-x2+x-10;②∀x∈R,|x|x;③∀x,y∈Z,2x-5y≠12;④∀x∈R,sin2x+sinx+1=0.答案①解析命题的否定为假命题亦即原命题为真命题,只有①为真命题.(2)(2018·哈尔滨联考)已知命题p:∀x∈R,3x5x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧qB.(綈p)∧qC.p∧(綈q)D.(綈p)∧(綈q)答案B解析若x=0,则30=50=1,∴p是假命题,∵方程x3=1-x2有解,∴q是真命题,∴(綈p)∧q是真命题.二、充要条件的判断例2(1)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n0”的()8A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析∵存在负数λ,使得m=λn,∴非零向量m与n方向相反,∴m·n0.∵m·n0,即|m||n|cos〈m,n〉0,∴cos〈m,n〉0,∴m与n的夹角为钝角或平角,不一定有m与n反向,故选A.(2)已知圆C:(x-1)2+y2=r2(r0).设p:0r3,q:圆C上至多有2个点到直线x-3y+3=0的距离为1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析圆C: