-1-6.3.2平面向量的正交分解及坐标表示6.3.3平面向量加、减运算的坐标表示6.3.4平面向量数乘运算的坐标表示考点学习目标核心素养平面向量的坐标表示理解向量正交分解以及坐标表示的意义数学抽象、直观想象平面向量加、减运算的坐标表示掌握两个向量的和、差及向量数乘的坐标运算法则数学运算平面向量数乘运算的坐标表示理解坐标表示的平面向量共线的条件,并会解决向量共线问题数学运算、逻辑推理第1课时平面向量的分解及加、减、数乘运算的坐标表示问题导学预习教材P27-P33的内容,思考以下问题:1.怎样分解一个向量才为正交分解?2.如何求两个向量和、差的向量的坐标?3.一个向量的坐标与有向线段的起点和终点坐标之间有什么关系?4.若a=(x,y),则λa的坐标是什么?1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a=b⇔x1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),λ∈R,则-2-①a+b=(x1+x2,y1+y2);②a-b=(x1-x2,y1-y2);③λa=(λx1,λy1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.(2)已知向量AB→的起点A(x1,y1),终点B(x2,y2),则AB→=(x2-x1,y2-y1).判断(正确的打“√”,错误的打“×”)(1)点的坐标与向量的坐标相同.()(2)零向量的坐标是(0,0).()(3)两个向量的终点不同,则这两个向量的坐标一定不同.()(4)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.()答案:(1)×(2)√(3)×(4)√已知A(3,1),B(2,-1),则BA→的坐标是()A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)答案:C如果用i,j分别表示x轴和y轴正方向上的单位向量,且A(2,3),B(4,2),则AB→可以表示为()A.2i+3jB.4i+2jC.2i-jD.-2i+j答案:C设i=(1,0),j=(0,1),a=3i+4j,b=-i+j,则a+b与a-b的坐标分别为____________.答案:(2,5),(4,3)平面向量的坐标表示已知O是坐标原点,点A在第一象限,|OA→|=43,∠xOA=60°,(1)求向量OA→的坐标;-3-(2)若B(3,-1),求BA→的坐标.【解】(1)设点A(x,y),则x=|OA→|cos60°=43cos60°=23,y=|OA→|sin60°=43sin60°=6,即A(23,6),所以OA→=(23,6).(2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标.(2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.1.在平面直角坐标系xOy中,向量a,b的方向如图所示,且|a|=2,|b|=3,则a的坐标为________,b的坐标为________.解析:设点A(x,y),B(x0,y0),因为|a|=2,且∠AOx=45°,所以x=2cos45°=2,y=2sin45°=2.又|b|=3,∠xOB=90°+30°=120°,所以x0=3cos120°=-32,y0=3sin120°=332,故a=OA→=(2,2),b=OB→=-32,332.答案:(2,2)-32,3322.已知长方形ABCD的长为4,宽为3,建立如图所示的平面直角坐标系,i是x轴上的单位向量,j是y轴上的单位向量,试求AC→和BD→的坐标.解:由题图知,CB⊥x轴,CD⊥y轴,因为AB=4,AD=3,所以AC→=4i+3j,所以AC→=(4,3).因为BD→=BA→+AD→=-AB→+AD→,-4-所以BD→=-4i+3j,所以BD→=(-4,3).平面向量的坐标运算(1)已知向量a=(5,2),b=(-4,-3),若c满足3a-2b+c=0,则c=()A.(-23,-12)B.(23,12)C.(7,0)D.(-7,0)(2)已知A(-2,4),B(3,-1),C(-3,-4),且CM→=3CA→,CN→=2CB→,求点M,N的坐标.【解】(1)选A.因为a=(5,2),b=(-4,-3),且c满足3a-2b+c=0,所以c=2b-3a=2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A(-2,4),B(3,-1),C(-3,-4),所以CA→=(-2,4)-(-3,-4)=(1,8),CB→=(3,-1)-(-3,-4)=(6,3).因为CM→=3CA→,CN→=2CB→,所以CM→=3(1,8)=(3,24),CN→=2(6,3)=(12,6).设M(x1,y1),N(x2,y2),所以CM→=(x1+3,y1+4)=(3,24),CN→=(x2+3,y2+4)=(12,6),所以x1+3=3,y1+4=24,x2+3=12,y2+4=6.解得x1=0,y1=20,x2=9,y2=2.所以M(0,20),N(9,2).法二:设O为坐标原点,则由CM→=3CA→,CN→=2CB→,可得OM→-OC→=3(OA→-OC→),ON→-OC→=2(OB→-OC→),所以OM→=3OA→-2OC→,ON→=2OB→-OC→.所以OM→=3(-2,4)-2(-3,-4)=(0,20),ON→=2(3,-1)-(-3,-4)=(9,2).所以M(0,20),N(9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.-5-(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行.1.已知A,B,C的坐标分别为(2,-4),(0,6),(-8,10),则AB→+2BC→=____________,BC→-12AC→=____________.解析:因为A(2,-4),B(0,6),C(-8,10),所以AB→=(-2,10),BC→=(-8,4),AC→=(-10,14),所以AB→+2BC→=(-18,18),BC→-12AC→=(-3,-3).答案:(-18,18)(-3,-3)2.已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.解析:由题意得ma+nb=(2m,m)+(n,-2n)=(2m+n,m-2n)=(9,-8),即2m+n=9,m-2n=-8,解得m=2,n=5,所以m-n=-3.答案:-3向量坐标运算的综合应用已知点O(0,0),A(1,2),B(4,5),及OP→=OA→+tAB→.(1)t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?(2)四边形OABP能为平行四边形吗?若能,求出t的值;若不能,请说明理由.【解】(1)OP→=OA→+tAB→=(1,2)+t(3,3)=(1+3t,2+3t).若点P在x轴上,则2+3t=0,所以t=-23.若点P在y轴上,则1+3t=0,所以t=-13.若点P在第二象限,则1+3t<0,2+3t>0,所以-23<t<-13.(2)OA→=(1,2),PB→=(3-3t,3-3t).若四边形OABP为平行四边形,-6-则OA→=PB→,所以3-3t=1,3-3t=2,该方程组无解.故四边形OABP不能为平行四边形.[变问法]若保持本例条件不变,问t为何值时,B为线段AP的中点?解:由OP→=OA→+tAB→,得AP→=tAB→.所以当t=2时,AP→=2AB→,B为线段AP的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.1.已知在平行四边形ABCD中,A(0,0),B(5,0),D(2,4),对角线AC,BD交于点M,则DM→的坐标是()A.32,-2B.32,2C.-32,-2D.-32,2解析:选A.DM→=12DB→=12[(5,0)-(2,4)]=12(3,-4)=32,-2.2.已知在非平行四边形ABCD中,AB∥DC,且A,B,D三点的坐标分别为(0,0),(2,0),(1,1),则顶点C的横坐标的取值范围是________.解析:当ABCD为平行四边形时,则AC→=AB→+AD→=(2,0)+(1,1)=(3,1),故满足题意的顶点C的横坐标的取值范围是(1,3)∪(3,+∞).-7-答案:(1,3)∪(3,+∞)1.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)答案:A2.已知A(-1,-2),B(2,3),C(-2,0),D(x,y),且AC→=2BD→,则x+y=________.解析:因为AC→=(-2,0)-(-1,-2)=(-1,2),BD→=(x,y)-(2,3)=(x-2,y-3),又2BD→=AC→,即(2x-4,2y-6)=(-1,2),所以2x-4=-1,2y-6=2,解得x=32,y=4,所以x+y=112.答案:1123.已知点B(1,0)是向量a的终点,向量b,c均以原点O为起点,且b=(-3,4),c=(-1,1)与a的关系为a=3b-2c,求向量a的起点坐标.解:a=3b-2c=3(-3,4)-2(-1,1)=(-7,10),设a的起点为A(x,y),则a=AB→=(1-x,-y),所以1-x=-7,-y=10,所以x=8,y=-10,所以A(8,-10).即a的起点坐标为(8,-10).[A基础达标]1.设i,j是平面直角坐标系内分别与x轴,y轴正方向相同的两个单位向量,O为坐标原点,若OA→=4i+2j,OB→=3i+4j,则2OA→+OB→的坐标是()-8-A.(1,-2)B.(7,6)C.(5,0)D.(11,8)解析:选D.因为OA→=(4,2),OB→=(3,4),所以2OA→+OB→=(8,4)+(3,4)=(11,8).2.设向量a=(1,2),b=(-3,5),c=(4,x),若a+b=λc(λ∈R),则λ+x的值为()A.-112B.112C.-292D.292解析:选C.由已知,可得(1,2)+(-3,5)=λ(4,x),所以4λ=-2,xλ=7,解得λ=-12,x=-14,所以λ+x=-292,故选C.3.已知MA→=(-2,4),MB→=(2,6),则12AB→等于()A.(0,5)B.(0,1)C.(2,5)D.(2,1)解析:选D.12AB→=12(MB→-MA→)=12(2,6)-12(-2,4)=(2,1).4.已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且BC→=2AD→,则顶点D的坐标为()A.2,72B.2,-12C.(3,2)D.(1,3)解析:选A.设点D(m,n),则由题意得(4,3)=2(m,n-2)=(2m,2n-4),故2m=4,2n-4=3,解得m=2,n=72,即点D的坐标为2,72,故选A.5.已知A(-3,0),B(0,2)