-1-第2讲点、直线、平面之间的位置关系考点1点、线、面的位置关系判断空间点、线、面位置关系,主要依赖四个公理、平行关系和垂直关系的有关定义及定理,具体处理时可以构建长方体或三棱锥等模型,把要考查的点、线、面融入模型中,判断会简洁明了.如要否定一个结论,只需找到一个反例就可以.[例1](1)[2019·全国卷Ⅱ]设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面(2)[2019·全国卷Ⅲ]如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】(1)本题主要考查直线与平面、平面与平面的位置关系,意在考查考生的空间想象能力、逻辑思维能力,考查的核心素养是数学抽象、逻辑推理、直观想象.对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确;对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确.综上可知选B.(2)本题主要考查空间线线位置关系,考查考生的空间想象能力,考查的核心素养是逻辑推理、直观想象、数学运算.取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面-2-ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=322+322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,选B.【答案】(1)B(2)B判断空间位置关系的两种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.『对接训练』1.[2019·浙江绍兴一中模拟]对于空间中的两条直线m,n和一个平面α,下列命题中为真命题的是()A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n解析:对于A,直线m,n可能平行、异面或相交,故A错误;对于B,直线m,n可能平行,也可能异面,故B错误;对于C,m与n垂直而非平行,故C错误;对于D,垂直于同一平面的两直线平行,故D正确.答案:D2.[2019·陕西西北工大附中调考]如图,四边形EFGH为四面体ABCD的一个截面,若AECE=BFFC=BGGD,则与平面EFGH平行的直线有()A.0条B.1条-3-C.2条D.3条解析:∵AECE=BFFC,∴EF⊥AB.又EF⊂平面EFGH,AB⊄平面EFGH,∴AB∥平面EFGH.同理,由BFFC=BGGD,可证CD∥平面EFGH.∴与平面EFGH平行的直线有2条.故选C.答案:C考点2空间中平行、垂直关系1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.[例2][2019·全国卷Ⅱ]如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【解析】本题考查了长方体的性质、直线与平面垂直的判定与性质和锥体的体积,考查了空间想象能力,主要体现了逻辑推理和直观想象的核心素养.-4-(1)证明:由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=13×3×6×3=18.1.证明线线平行的4种常用方法(1)利用平行公理,即证两直线同时和第三条直线平行;(2)利用平行四边形进行平行转换;(3)利用三角形的中位线定理证线线平行;(4)利用线面平行、面面平行的性质定理进行平行转换.2.证明线线垂直的3种常用方法(1)利用等腰三角形底边中线即高线的性质;(2)勾股定理;(3)线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.『对接训练』3.[2019·陕西商洛质检]-5-如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得PA∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)因为PD⊥平面ABCD,AD⊂平面ABCD,所以PD⊥AD.又因为ABCD是矩形,所以AD⊥CD.因为PD∩CD=D.所以AD⊥平面PCD,所以AD是三棱锥A-PDE的高.因为E为PC的中点,且PD=DC=4,所以S△PDE=12S△PDC=12×12×4×4=4.又AD=2,所以VA-PDE=13AD·S△PDE=13×2×4=83.(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,所以EM∥PA.又因为EM⊂平面EDM,PA⊄平面EDM,所以PA∥平面EDM.所以AM=12AC=5.即在AC边上存在一点M,使得PA∥平面EDM,AM的长为5.-6-考点3平面图形的折叠问题1.画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图.2.把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体的结构特征,进行空间线面关系逻辑推理的基础.3.准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是准确进行计算的基础.[例3][2019·全国卷Ⅲ]图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题考查了线面、面面垂直问题,通过翻折、平面与平面垂直的证明考查了空间想象能力和推理论证能力,考查了直观想象的核心素养.(1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,BE∩BC=B,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.-7-因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE.故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.又DM⊂平面DEM,因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.『对接训练』4.[2019·湖南省湘东六校联考]如图,将矩形ABCD沿对角线AC折起,使得平面ABD′⊥平面ABC.(1)求证:AD′⊥平面BCD′;(2)当AB=3,AD=1时,求点B到平面AD′C的距离.解析:(1)∵BC⊥AB,平面ABD′⊥平面ABC,平面ABD′∩平面ABC=AB,∴BC⊥平面ABD′,∵AD′⊂平面ABD′,∴BC⊥AD′,又AD′⊥D′C,BC∩D′C=C,∴AD′⊥平面BCD′.(2)由(1)知AD′⊥平面BCD′,又BD′⊂平面BCD′,∴AD′⊥BD′,从而BD′=2,-8-设点B到平面AD′C的距离为h,由V三棱锥B-AD′C=V三棱锥C-AD′B,得13S△AD′C·h=13S△AD′B·BC,即13×12×1×3×h=13×12×1×2×1,得h=63,即点B到平面AD′C的距离为63.考点4空间线面关系的探究性问题[例4][2018·全国卷Ⅲ]如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.解析:(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:如图,连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.-9-又MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,说明假设成立,并可进一步证明;若推导出与条件或实际情况相矛盾的结论,则说明假设不成立.(2)探索线段上是否存在满足题意的点时,注意三点共线条件的应用.『对接训练』5.[2019·河南名校压轴第二次考试]如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.解析:(1)证明:在梯形ABCD中,因为AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠DAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACFE.(2)当EM=33a时,AM∥平面BDF,理由如下:在梯形ABCD中,设AC∩BD=N,连接FN.-10-由(1)知四边形ABCD为等腰梯形,且∠ABC=60°,所以AB=2BC=2DC,则=易知EF=AC=3a,因为EM=33a,所以MF=23EF=233a,