(新课标)2020版高考数学二轮复习 专题四 概率与统计 第3讲 概率、统计与统计案例的交汇问题学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第3讲概率、统计与统计案例的交汇问题[做真题]1.(2018·高考全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数151310165(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)-2-解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48.因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).2.(2017·高考全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法-3-新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P(K2≥k0)0.0500.0100.001k03.8416.63510.828,K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解:(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量50kg箱产量≥50kg旧养殖法6238新养殖法3466K2的观测值k=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.7056.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50kg到55kg之间,旧养殖法的箱产量平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.[明考情]高考对该部分内容的考查主要以解答题的形式呈现,试题难度中等,主要考查概率、概率分布直方图、茎叶图、数字特征、回归分析上独立性检验的变化.-4-概率与频率分布直方图、茎叶图等图例的交汇(交汇型)[典型例题](2019·福建五校第二次联考)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该实体店一天获利不低于800元的概率;(3)根据销售量的频率分布直方图,求该服装店网店销售量的中位数的估计值(精确到0.01).【解】(1)由题意知,网店销售量不低于50的共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50的共有(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50的天数为100×0.24=24,故实体店和网店至少有一边销售量不低于50的天数为66+38-24=80.-5-(2)由题意,设该实体店一天售出x件,则获利为(50x-1700)元,50x-1700≥800⇒x≥50.设该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.(3)因为网店销售量频率分布直方图中,销售量低于50的频率分布直方图面积为(0.004+0.020+0.044)×5=0.340.5,销售量低于55的频率分布直方图面积为(0.004+0.020+0.044+0.068)×5=0.680.5,所以网店销售量的中位数的估计值为50+0.5-0.340.34×5≈52.35.统计与概率“搭台”,方案选择“唱戏”破解此类频率分布直方图、分层抽样与概率相交汇的开放性问题的关键:一是会观图读数据,能从频率分布直方图中读出频率,进而求出频数;二是能根据分层抽样的抽样比或各层之间的比例,求出分层抽样中各层需抽取的个数;三是会转化,会对开放性问题进行转化.[对点训练](2019·唐山市摸底考试)某厂分别用甲、乙两种工艺生产同一种零件,尺寸在[223,228]内(单位:mm)的零件为一等品,其余为二等品.在两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示:(1)分别计算抽取的两种工艺生产的零件尺寸的平均数;(2)已知甲工艺每天可生产300个零件,乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个,视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高?解:(1)x甲=110×(217+218+222+225+226+227+228+231+233+234)=226.1;x乙=110×(218+219+221+224+224+225+226+228+230+232)=224.7.(2)由抽取的样本可知,应用甲工艺生产的零件为一等品的概率为25,二等品的概率为35,故采用甲工艺生产该零件每天获得的利润为w甲=300×25×30+300×35×20=7200(元);-6-应用乙工艺生产的零件为一等品、二等品的概率均为12,故采用乙工艺生产该零件每天获得的利润为w乙=280×12×30+280×12×20=7000(元).因为w甲w乙,所以采用甲工艺生产该零件每天获得的利润更高.概率与图表、独立性检验的交汇(交汇型)[典型例题]某工厂有两台不同的机器A和B,生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行质量鉴定,鉴定成绩的茎叶图如图所示.该产品的质量评价标准规定:鉴定成绩在[90,100)内的产品,质量等级为优秀;鉴定成绩在[80,90)内的产品,质量等级为良好;鉴定成绩在[60,80)内的产品,质量等级为合格.将频率视为概率.(1)完成下列2×2列联表,以产品质量等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上(含良好)与生产产品的机器有关;A机器生产的产品B机器生产的产品总计良好以上(含良好)合格总计(2)已知质量等级为优秀的产品的售价为12元/件,质量等级为良好的产品的售价为10元/件,质量等级为合格的产品的售价为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元.该工厂决定,按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则保留原来的两台机器,你认为该工厂会怎么做?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),P(K2≥k)0.250.150.100.050.010-7-k1.3232.0722.7063.8416.635【解】(1)完成2×2列联表如下.A机器生产的产品B机器生产的产品总计良好以上(含良好)61218合格14822总计202040结合列联表中的数据,可得K2的观测值k=40×(6×8-12×14)220×20×18×22=4011≈3.6363.841.故在误差不超过0.05的情况下,不能认为产品等级是否达到良好以上(含良好)与生产产品的机器有关.(2)由题意得,A机器每生产10万件产品的利润为10×(12×0.1+10×0.2+5×0.7)-20=47(万元),B机器每生产10万件产品的利润为10×(12×0.15+10×0.45+5×0.4)-30=53(万元),因为53-47=6(万元),65,所以该工厂应该会卖掉A机器,同时购买一台B机器.破解直方图、茎叶图、独立性检验相交汇的开放性问题的关键是会利用直方图、茎叶图得到相关的数据,充分利用2×2列联表准确地计算出K2的观测值k,并将K2的观测值k0与临界值进行比较,进而作出统计推断.对于开放性问题要会转化,如本题第(2)小题,把所求问题转化为比较两台机器每生产10万件产品所获利润的大小,即可得出结论.[对点训练]某种常见疾病可分为Ⅰ,Ⅱ两种类型.为了了解所患该疾病类型与地域、初次患该疾病的年龄(单位:岁)(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其所患疾病类型及初次患病年龄,得到如下数据.初次患病年龄甲地Ⅰ型疾病患者/人甲地Ⅱ型疾病患者/人乙地Ⅰ型疾病患者/人乙地Ⅱ型疾病患者/人[10,20)8151[20,30)4331[30,40)3524[40,50)3844[50,60)3926-8-[60,70]21117(1)从Ⅰ型疾病患者中随机抽取1人,估计其初次患病年龄小于40岁的概率;(2)记“初次患病年龄在[10,40)内的患者”为“低龄患者”,“初次患病年龄在[40,70]内的患者”为“高龄患者”.根据表中数据,解决以下问题.(i)将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与所患疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)表一疾病类型患者所在地域Ⅰ型Ⅱ型总计甲地乙地总计100表二疾病类型初次患病年龄Ⅰ型Ⅱ型总计低龄高龄总计100(ii)记(i)中与所患疾病的类型有关联的可能性更大的变量为X.问:是否有99.9%的把握认为所患疾病的类型与X有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.100.050.0100.0050.001k02.7063.8416.6357.87910.828解:(1)依题意,甲、乙两地区Ⅰ型疾病患者共40人,甲、乙两地区Ⅰ型疾病患者初次患病年龄小于40岁的人数分别为15,10,则从Ⅰ型疾病患者中随机抽取1人,其初次患病年龄小于40岁的概率的估计值为15+1040=58.(2)(i)填写结果如下.-9-表一疾病类型患者所在地域Ⅰ型Ⅱ型总计甲地233760乙地172340总计4060100表二疾病类型初次患病年龄Ⅰ型Ⅱ型总计低龄251540高龄154560总计4060100“初次患病年龄”与所患疾病的类型有关联的可能性更大.(ii)由(i)可知X为初次患病年龄,根据表二中的数据可得a=25,b=15,c=15,d=45,n=100,则K2的观测值k=100×(25×45-15×15)240×60×40×60≈14.063,14.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功