-1-第1章集合与函数概念求函数的定义域【例1】(1)求函数y=5-x+x-1-1x2-9的定义域.(2)将长为a的铁丝折成矩形,求矩形面积y关于一边长x的解析式,并写出此函数的定义域.[解](1)解不等式组5-x≥0,x-1≥0,x2-9≠0,得x≤5,x≥1,x≠±3,故函数的定义域是{x|1≤x≤5且x≠3}.(2)设矩形的一边长为x,则另一边长为12(a-2x),所以y=x·12(a-2x)=-x2+12ax,定义域为x0x12a.1.已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.2.实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.1.函数f(x)=3x21-x+(3x-1)0的定义域是()A.-∞,13B.13,1-2-C.-13,13D.-∞,13∪13,1D[由1-x0,3x-1≠0,得x1且x≠13,故选D.]求函数的解析式【例2】(1)函数f(x)在R上为奇函数,当x0时,f(x)=x+1,则f(x)的解析式为________.(2)已知f1+xx=1+x2x2+1x,则f(x)的解析式为________.(1)f(x)=1+x,x00,x=0,--x-1,x0(2)f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞)[(1)设x0,则-x0,∴f(-x)=-x+1.∵f(x)是奇函数,∴f(-x)=-f(x),即-f(x)=-x+1,∴f(x)=--x-1.∵f(x)是奇函数,∴f(0)=0,∴f(x)=1+x,x0,0,x=0,--x-1,x0.(2)令t=1+xx=1x+1,则t≠1.把x=1t-1代入f1+xx=1+x2x2+1x,得f(t)=1+1t-121t-12故不等式的解集为(0,3)∪(-3,0).]