2021版高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 10.4 古典概型教学案 苏教

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第四节古典概型[最新考纲]1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型的特点3.古典概型的概率计算公式:P(A)=A包含的基本事件的个数基本事件的总数.一、思考辨析(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.()(3)概率为0的事件一定是不可能事件.()(4)从市场上出售的标准为500±5g的袋装食盐中任取一袋测其重量,属于古典概型.()[答案](1)√(2)×(3)×(4)×二、教材改编1.一枚硬币连掷2次,只有一次出现正面的概率为()A.23B.14C.13D.12D[一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,-2-只有一次出现正面的情况有两种,故P=24=12.]2.为美化环境,从红、黄、白、紫4种颜色的花中任选2种颜色的花种在一个花坛中,余下的2种颜色的花种在另一个花坛中,则红色和紫色的花种在同一花坛的概率是()A.110B.12C.13D.56C[把这4种颜色的花种在两个花坛中的所有情况为(红,黄),(白,紫);(红,白),(黄,紫);(红,紫),(黄,白);(黄,白),(红,紫);(黄,紫),(红,白);(白,紫),(红,黄),共有6种,其中红色和紫色的花种在同一花坛的情况有2种,所以红色和紫色的花种在同一花坛的概率P=26=13,故选C.]3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为()A.25B.415C.35D.23A[从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P=615=25.]4.同时掷两个骰子,向上点数不相同的概率为.56[掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P=1-636=56.]考点1简单的古典概型计算古典概型事件的概率可分3步(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P.提醒:解题时可根据需要灵活选择列举法、列表法或树形图法.(1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是()-3-A.34B.13C.310D.25(2)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.25(3)(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116(1)D(2)D(3)A[(1)用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=410=25.(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P=1025=25.故选D.(3)由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P=2064=516.故选A.]古典概型中基本事件个数的探求方法-4-(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.[教师备选例题]1.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为()A.18B.14C.13D.12A[有序数对(m,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a⊥(a-b),得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以所求的概率P(A)=216=18.]2.用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2<a3>a4>a5特征的五位数的概率为.120[1,2,3,4,5可组成A55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C24C22=6个,故出现a1<a2<a3>a4>a5特征的五位数的概率为6120=120.]1.(2019·武汉模拟)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()A.310B.25C.320D.14C[将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C36种放法,甲盒中恰好有3个小球有C23种放法,结合古典概型的概率计算公式得所求概率为C23C36=320.故选C.]2.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是()A.512B.13-5-C.14D.16A[∵a∈{0,1,2},b∈{-1,1,3,5},∴基本事件总数n=3×4=12.函数f(x)=ax2-2bx在区间(1,+∞)上为增函数,①当a=0时,f(x)=-2bx,符合条件的只有(0,-1),即a=0,b=-1;②当a≠0时,需要满足ba≤1,符合条件的有(1,-1),(1,1),(2,-1),(2,1),共4种.∴函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是P=512.]考点2古典概型与统计的综合求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育○○×○×○继续教育××○×○○-6-大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(ⅰ)试用所给字母列举出所有可能的抽取结果;(ⅱ)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.[解](1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(ⅰ)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.(ⅱ)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=1115.有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.[教师备选例题]某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.[解](1)由题意知,样本数据的平均数-7-x=4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,概率为26=13,由此估计这90个服务网点中优秀服务网点有90×13=30(个).(3)样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),共8种,故所求概率P(M)=815.移动公司拟在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.(1)求从中任选1人获得优惠金额不低于300元的概率;(2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.[解](1)设事件A为“从中任选1人获得优惠金额不低于300元”,则P(A)=150+10050+150+100=56.(2)设事件B为“从这6人中选出2人,他们获得相等优惠金额”,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为a1,b1,b2,b3,c1,c2,从中选出2人的所有基本事件如下:a1b1,a1b2,a1b3,a1c1,a1c2,b1b2,b1b3,b1c1,b1c2,b2b3,b2c1,b2c2,b3c1,b3c2,c1c2,共15个.其中使得事件B成立的有b1b2,b1b3,b2b3,c1c2,共4个.则P(B)=415.故这2人获得相等

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功