1第二节命题及其关系、充分条件与必要条件[最新考纲]1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且qpp是q的必要不充分条件pq且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件pq且qp[常用结论]1.在四种形式的命题中,真命题的个数只能为0,2,4.2.p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.其他情况依次类推.3.集合与充要条件:设p,q成立的对象构成的集合分别为A,B,p是q的充分不必要条件⇔AB;p是q的必要不充分条件⇔AB;p是q的充要条件⇔A=B.一、思考辨析(正确的打“√”,错误的打“×”)2(1)“x2+2x-30”是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)当q是p的必要条件时,p是q的充分条件.()(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.()[答案](1)×(2)×(3)√(4)√二、教材改编1.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题A[令a=c=0,b=d=-1,则ac<bd,故B错误;当a=2时,a是素数但不是奇数,故C错误;取x=-1,则x2>0,但x<1,故D错误.]2.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”C[根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.故选C.]3.“(x-1)(x+2)=0”是“x=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2)=0,则x的值也可能为-2.故选B.]4.命题“若α=π3,则sinα=32”的逆命题为________命题,否命题为________命题.(填“真”或“假”)假假[若α=π3,则sinα=32的逆命题为“若sinα=32,则α=π3”是假命题;否命题为“若α≠π3,则sinα≠32”是假命题.]考点1命题及其关系判断命题真假的2种方法(1)直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命3题,只需举出一个反例即可.(2)间接判断:当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.1.下列命题是真命题的是()A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2[答案]A2.下列命题中的真命题是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x=3,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④B[①“若x2+y2≠0,则x,y不全为零”的否命题为“若x2+y2=0,则x,y全为零”,是真命题;②“正多边形都相似”的逆命题是“相似的多边形是正多边形”,为假命题;③“若m>0,则x2+x-m=0有实根”是真命题,故其逆否命题也是真命题;④“若x=3,则x是无理数”是真命题,故其逆否命题也是真命题.故选B.]3.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的有________.(填序号)①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.①③[本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.]4.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是________.若方程x2+x-m=0没有实根,则m≤0[m∈R是大前提,故该命题的逆否命题为“若方程x2+x-m=0没有实根,则m≤0.”]四种命题的3个处理技巧(1)要分清原命题的条件与结论.当原命题有大前提时,它的其他三种命题要保持大前提不变,只需改变小前提和结论.如T4.4(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(3)判断一个命题是真命题,要给出推理证明;判断一个命题为假命题可举反例.考点2充分、必要条件的判定充分条件和必要条件的3种判断方法(1)定义法:可按照以下三个步骤进行①确定条件p是什么,结论q是什么;②尝试由条件p推结论q,由结论q推条件p;③确定条件p和结论q的关系.(2)等价转化法:对于含否定形式的命题,如綈p是綈q的什么条件,利用原命题与逆否命题的等价性,可转化为求q是p的什么条件.(3)集合法:根据p,q成立时对应的集合之间的包含关系进行判断.(1)(2019·浙江高考)设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2019·天津高考)设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(3)(2019·北京高考)设点A,B,C不共线,则“AB→与AC→的夹角为锐角”是“|AB→+AC→|>|BC→|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(1)A(2)B(3)C[(1)由a>0,b>0,若a+b≤4,得4≥a+b≥2ab,即ab≤4,充分性成立;当a=4,b=1时,满足ab≤4,但a+b=5>4,不满足a+b≤4,必要性不成立.故“a+b≤4”是“ab≤4”的充分不必要条件,选A.(2)由x2-5x<0得0<x<5,记A={x|0<x<5},由|x-1|<1得0<x<2,记B={x|05<x<2},显然BA,∴“x2-5x<0”是“|x-1|<1”的必要而不充分条件,故选B.(3)|AB→+AC→|>|BC→|⇔|AB→+AC→|>|AC→-AB→|⇔AB→2+AC→2+2AB→·AC→>AB→2+AC→2-2AB→·AC→⇔AB→·AC→>0,由点A,B,C不共线,得〈AB→,AC→〉∈0,π2,故AB→·AC→>0⇔AB→,AC→的夹角为锐角.故选C.][逆向问题](2019·湘东五校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>14B.0<m<1C.m>0D.m>1C[若不等式x2-x+m>0在R上恒成立,则Δ=(-1)2-4m<0,解得m>14,因此当不等式x2-x+m>0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m>0.]判断充要条件需注意3点(1)要分清条件与结论分别是什么.(2)要从充分性、必要性两个方面进行判断.(3)直接判断比较困难时,可举出反例说明.1.已知x∈R,则“x=-1”是“x2-5x-6=0”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件B[x2-5x-6=0⇔x=-1或x=6,∵x=-1⇒x=-1或x=6,而x=-1或x=6推不出x=-1,∴“x=-1”是“x2-5x-6=0”的充分而不必要条件,故选B.]2.给定两个命题p,q,若綈p是q的必要不充分条件,则p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[因为綈p是q的必要不充分条件,所以q⇒綈p,但綈pq,其等价于p⇒綈q,但綈qp,故选A.]3.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人6之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A.充要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件D[非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件.]考点3充分条件、必要条件的应用根据充要条件求参数值(或范围)的方法是先把充要条件转化为集合之间的关系,再根据集合的关系列出关于参数的不等式(组)求解.已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,则m的取值范围为________.[0,3][由x2-8x-20≤0得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.又S为非空集合,则1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.即所求m的取值范围是[0,3].][母题探究]把本例中的“必要条件”改为“充分条件”,求m的取值范围.[解]由x∈P是x∈S的充分条件,知P⊆S,则1-m≤1+m,1-m≤-2,1+m≥10,解得m≥9,即所求m的取值范围是[9,+∞).利用充要条件求参数的2个关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍.提醒:含有参数的问题,要注意分类讨论.7设n∈N+,则一元二次方程x2-4x+n=0有整数根的充要条件是n=________.3或4[由Δ=16-4n≥0,得n≤4,又n∈N*,则n=1,2,3,4.当n=1,2时,方程没有整数根;当n=3时,方程有整数根1,3,当n=4时,方程有整数根2.综上可知,n=3或4.]