2021高考数学一轮复习 第3章 导数及其应用 经典微课堂 突破疑难系列1 函数与导数教学案 文 北

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-突破疑难点1构造函数证明不等式(对应学生用书第54页)构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如lnx≤x-1,ex≥x+1,lnx<x<ex(x>0),xx+1≤ln(x+1)≤x(x>-1);(3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.方法高考示例思维过程直接构造法(2018·全国卷Ⅰ)已知函数f(x)=1x-x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:fx1-fx2x1-x2<a-2.……(2)证明:由(1)知,f(x)存在两个极值点当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0(函数在极值点处的导数为0),所以x1x2=1.不妨设x1<x2,则x2>1(注意原函数的定义域).由于fx1-fx2x1-x2=-1x1x2-1+alnx1-lnx2x1-x2=-2+alnx1-lnx2x1-x2=-2+a-2lnx21x2-x2,所以fx1-fx2x1-x2<a-2等价于1x2-x2+2lnx2<0.【关键1:将所证不等式进行变形与化简】设函数g(x)=1x-x+2lnx,由(1)知,g(x)在(0,+∞)单调递减,【关键2:直接构造函数,判断函数单调性】又g(1)=0,从而当x∈(1,+∞)时,g(x)<0,所以1x2-x2+2lnx2<0,即fx1-fx2x1-x2<a-2.【关键3:结合单调性得到函数最值,证明不等式】-2-适当放缩构造法(2018·全国卷Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.……(2)证明:当a≥1e时,f(x)≥exe-lnx-1.【关键1:利用不等式性质放缩,将a代换掉】设g(x)=exe-lnx-1,【关键2:利用不等式右边构造函数】则g′(x)=exe-1x.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.【关键3:利用导数研究函数的单调性、最值】故当x>0时,g(x)≥g(1)=0.【关键4:利用函数最值使放缩后的不等式得到证明】因此,当a≥1e时,f(x)≥0.构造双函数法(2014·全国卷Ⅰ)设函数f(x)=aexlnx+bex-1x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.……(2)证明:由(1)知,f(x)=exlnx+2xex-1,从而f(x)>1等价于xlnx>xe-x-2e.【关键1:将所证不等式等价转化,为构造双函数创造条件】设函数g(x)=xlnx,则g′(x)=1+lnx,所以当x∈0,1e时,g′(x)<0;当x∈1e,+∞时,g′(x)>0.故g(x)在0,1e上单调递减,在1e,+∞上单调递增,从而g(x)在(0,+∞)上的最小值为g1e=-1e.【关键2:构造函数,利用导数研究函数的单调性,求最小值】设函数h(x)=xe-x-2e,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0.故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从-3-而h(x)在(0,+∞)上的最大值为h(1)=-1e.【关键3:构造函数,利用导数研究函数的单调性,求最大值】因为g(x)min=g1e=h(1)=h(x)max,所以当x>0时,g(x)>h(x),即f(x)>1.【关键4:利用函数最值证明不等式】突破疑难点2利用分类讨论法确定参数取值范围(对应学生用书第55页)一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.常见有两种情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.方法高考示例思维过程结合导函数的零点分类讨论(2017·全国卷Ⅲ)已知函数f(x)=x-1-alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,1+121+122…1+12n<m,求m的最小值.(1)f(x)的定义域为(0,+∞)(求函数定义域).①若a≤0,因为f12=-12+aln2<0,所以不满足题意.【关键1:利用原函数解析式的特点确定分类标准】②若a>0,由f′(x)=1-ax=x-ax知,当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0.所以f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.【关键2:根据导函数的零点分类讨论】故x=a是f(x)在(0,+∞)上的唯一最小值点.由于f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.-4-(2015·全国卷Ⅱ)设函数f(x)=emx+x2-mx.(1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.……(2)由(1)知,对任意的m,f(x)在[-1,0]上单调递减,在[0,1]上单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要条件是f1-f0≤e-1,f-1-f0≤e-1,即em-m≤e-1,e-m+m≤e-1.①【关键1:利用充要条件把不等式恒成立等价转化】设函数g(t)=et-t-e+1,则g′(t)=et-1.【关键2:直接构造函数,并求导】当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(-∞,0)上单调递减,在(0,+∞)上单调递增.又g(1)=0,g(-1)=e-1+2-e<0,故当t∈[-1,1]时,g(t)≤0.【关键3:根据导函数的零点分类讨论】故当m∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,知g(m)>0,即em-m>e-1;当m<-1时,g(-m)>0,即e-m+m>e-1.【关键4:通过分类讨论得到参数的取值范围】综上,m的取值范围是[-1,1].-5-由导函数的特点直接分类讨论(2014·全国卷)函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a的取值范围.……(2)当a>0,x>0时,f′(x)=3ax2+6x+3>0.【关键1:函数求导,根据导函数的特点确定分类标准】故当a>0时,f(x)在区间(1,2)是增函数.当a<0时,f(x)在区间(1,2)是增函数当且仅当f′(1)≥0且f′(2)≥0,解得-54≤a<0.【关键2:利用导数判断函数的单调性,结合需满足的条件,求解关于参数的不等式,得到参数的取值范围】综上,a的取值范围是-54,0∪(0,+∞).突破疑难点3两法破解函数零点个数问题(对应学生用书第56页)两类零点问题的不同处理方法:利用零点存在性定理的条件为函数图像在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.方法高考示例思维过程直接法(2017·全国卷Ⅱ)已知函数f(x)=ax2-ax-xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.……(2)证明:由(1)知f(x)=x2-x-xlnx,f′(x)=2x-2-lnx.设h(x)=2x-2-lnx,则h′(x)=2-1x.当x∈0,12时,h′(x)<0;当x∈12,+∞时,h′(x)>0.所以h(x)在0,12上单调递减,在12,+∞上单调递增.【关键1:构造函数,利用导数研究函数的单调性】又h(e-2)>0,h12<0,h(1)=0,所以h(x)在0,12上有唯一零点x0,在12,+∞上有唯一零点1,【关键2:利用零点存在性定理判断导函数零点的位置】且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f′(x0)=0得lnx0=2(x0-1),-6-故f(x0)=x0(1-x0).由x0∈0,12得f(x0)<14.【关键3:求二次函数值域得到f(x0)的范围】因为x=x0是f(x)在(0,1)上的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2,所以e-2<f(x0)<2-2.【关键4:利用函数最值证明不等式】分类讨论法(2015·全国卷Ⅰ)已知函数f(x)=x3+ax+14,g(x)=-lnx.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.……(2)当x∈(1,+∞)时,g(x)=-lnx<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+∞)上无零点.【关键1:对x的取值分类讨论,适当放缩,判断h(x)的符号,确定函数零点个数】当x=1时,若a≥-54,则f(1)=a+54≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-54,则f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故x=1不是h(x)的零点.【关键2:当x的取值固定时,对参数a的取值分类讨论,确定函数值的符号得到零点个数】当x∈(0,1)时,g(x)=-lnx>0,所以只需考虑f(x)在(0,1)上的零点个数.(ⅰ)若a≤-3或a≥0,则f′(x)=3x2+a在(0,1)上无零点,故f(x)在(0,1)上单调.而f(0)=14,f(1)=a+54,所以当a≤-3时,f(x)在(0,1)上有一个零点;当a≥0时,f(x)在(0,1)上没有零点.(ⅱ)若-3<a<0,则f(x)在0,-a3上单调递减,在-a3,1上单调递增,故在(0,1)上,当x=-a3时,f(x)取得最小值,最小值为f-a3=2a3-a3+14.①若f-a3>0,即-34<a<0,则f(x)在(0,1)上无零点;②若f-a3=0,即a=-34,则f(x)在(0,1)上有唯一零点;③若f-a3<0,即-3<a<-34,

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功