-1-第二章推理与证明知识系统整合规律方法收藏1.图形中的归纳推理问题主要涉及某些固定图形的个数,所以常常需要转化成数列问题来求解,常用的思路有两种:(1)直接查个数,找到变化规律后再猜想;(2)观察图形的变化规律.2.探索性问题是数学中的一类重要问题,如探讨数列的通项、前n项和、立体几何、解析几何中的性质等,在处理时,先采用合情推理猜想、再采用演绎推理的论证方法.3.对于较为复杂的数学命题,不论是从“已知”推向“结论”,还是由“结论”靠向“已知”,都有一个比较长的过程,单靠分析或综合显得较为困难.为保证探索方向准确且过程快捷,人们又常常把分析与综合两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.把分析法与综合法两者结合起来进行思考,寻求问题的解答途径的方式就是人们通常所说的分析综合法,也就是常说的“两路夹攻,一攻就通”的证明思路.4.解决数学中的证明问题,既要掌握常用的证明方法的思维过程、特点,又要有牢固的数学基础知识.另外,还应掌握证明的一些常用方法与技巧,证明常用的方法与技巧有以下几种:-2-(1)换元法.换元法是结构较为复杂且量与量之间的关系不甚明了的命题,通过恰当地引入新变量,代换原命题中的部分式子,简化原有结果,使其转化为便于研究的形式.常见的有代数换元与三角换元.在应用换元法时,要注意新变量的取值范围,即代换的等价性.换元法步骤:①设元(或构造元)――→转化n-1a(n∈N*).拓展提升由已知求出数列的前n项,提出猜想,然后再用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式的方法,证明的关键是根据已知条件和假设寻找ak与ak+1或Sk与Sk+1之间的关系,从而为数学归纳法的实施做了必要的准备.