1课后作业(四十一)复习巩固一、选择题1.cos-79π6的值为()A.-12B.12C.-32D.32[解析]cos-79π6=cos-12π-7π6=cos-7π6=cos7π6=cosπ+π6=-cosπ6=-32,故选C.[答案]C2.sin2(π+α)-cos(π+α)cos(-α)+1的值为()A.1B.2sin2αC.0D.2[解析]∵原式=sin2α-(-cosα·cosα)+1=sin2α+cos2α+1=2,∴选D.[答案]D3.若cos(π+α)=-12,32πα2π,则sin(2π+α)等于()A.12B.±32C.32D.-32[解析]由cos(π+α)=-12,得cosα=12,故sin(2π+α)=sinα=-1-cos2α=-32(α为第四象限角).[答案]D4.已知a=cos23π4,b=sin-33π4,则a,b的大小关系是()A.abB.a=bC.abD.不能确定2[解析]∵a=cos23π4=cos6π-π4=cosπ4=22,b=sin-33π4=-sin8π+π4=-sinπ4=-22,∴ab.[答案]C5.已知α和β的终边关于x轴对称,则下列各式中正确的是()A.sinα=sinβB.sin(α-2π)=sinβC.cosα=cosβD.cos(2π-α)=-cosβ[解析]由α和β的终边关于x轴对称,故β=-α+2kπ(k∈Z),故cosα=cosβ.[答案]C二、填空题6.sin600°+tan240°=________.[解析]sin600°+tan240°=sin(360°+240°)+tan(180°+60°)=sin240°+tan60°=sin(180°+60°)+tan60°=-sin60°+tan60°=-32+3=32.[答案]327.化简:1+2sinπ-2·cosπ-2=________.[解析]1+2sinπ-2·cosπ-2=1-2sin2cos2=sin2-cos22=|sin2-cos2|,因2弧度在第二象限,故sin20cos2,所以原式=sin2-cos2.[答案]sin2-cos28.已知sin5π7=m,则cos2π7=________.[解析]因为sin5π7=sinπ-2π7=sin2π7=m,且2π7∈0,π2,所以cos2π7=1-m2.[答案]1-m2三、解答题9.计算下列各式的值:(1)cosπ5+cos2π5+cos3π5+cos4π5;(2)sin420°cos330°+sin(-690°)cos(-660°).3[解](1)原式=cosπ5+cos4π5+cos2π5+cos3π5=cosπ5+cosπ-π5+cos2π5+cosπ-2π5=cosπ5-cosπ5+cos2π5-cos2π5=0.(2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)cos(-2×360°+60°)=sin60°cos30°+sin30°cos60°=32×32+12×12=1.10.化简:(1)sin540°+α·cos-αtanα-180°;(2)cosθ+4π·cos2θ+π·sin2θ+3πsinθ-4πsin5π+θcos2-π+θ.[解](1)原式=sin[360°+180°+α]-tan180°-α·cosα=sin180°+αcosαtanα=-sinαcosαsinαcosα=-cos2α.(2)原式=cosθ·cos2θ·sin2θsinθ·-sinθ·cos2θ=-cosθ.综合运用11.已知tanπ3-α=13,则tan2π3+α等于()A.13B.-13C.233D.-233[解析]因为tan2π3+α=tanπ-π3-α=-tanπ3-α,所以tan2π3+α=-13.故选B.[答案]B12.若sin(π+α)+sin(-α)=-m,则sin(3π+α)+2sin(2π-α)等于()A.-23mB.-32mC.23mD.32m4[解析]因为sin(π+α)+sin(-α)=-2sinα=-m,所以sinα=m2,则sin(3π+α)+2sin(2π-α)=-sinα-2sinα=-3sinα=-32m.故选B.[答案]B13.已知cos(α-75°)=-13,且α为第四象限角,则sin(105°+α)=________.[解析]因为a是第四象限角且cos(α-75°)=-130,所以α-75°是第三象限角,所以sin(α-75°)=-223,所以sin(105°+α)=sin[180°+(α-75°)]=-sin(α-75°)=223.[答案]22314.已知tan(π+α)=-12,则2cosπ-α-3sinπ+α4cosα-2π+sin4π-α=________.[解析]tan(π+α)=-12,则tanα=-12,原式=-2cosα-3-sinα4cosα+sin-α=-2cosα+3sinα4cosα-sinα=-2+3tanα4-tanα=-2+3×-124--12=-79.[答案]-7915.化简:sin[k+1π+θ]·cos[k+1π-θ]sinkπ-θ·coskπ+θ(k∈Z).[解]当k为奇数时,不妨设k=2n+1,n∈Z,则原式=sin[2n+2π+θ]·cos[2n+2π-θ]sin2nπ+π-θ·cos2nπ+π+θ5=sinθ·cosθsinπ-θ·cosπ+θ=sinθ·cosθsinθ·-cosθ=-1;当k为偶数时,不妨设k=2n,n∈Z.则原式=sin[2n+1π+θ]·cos[2n+1π-θ]sin2nπ-θ·cos2nπ+θ=sinπ+θ·cosπ-θsin-θ·cosθ=-sinθ·-cosθ-sinθ·cosθ=-1.综上,sin[k+1π+θ]·cos[k+1π-θ]sinkπ-θ·coskπ+θ=-1.