1课时作业(四)1.已知等差数列{an}的通项公式a4=5,a5=4,则a9等于()A.1B.2C.0D.3答案C2.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有()A.a1+a1010B.a2+a1000C.a3+a100≤0D.a51=0答案D3.已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m等于()A.4B.6C.8D.12答案C4.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12的值为()A.20B.22C.24D.28答案C解析∵a4+a6+a8+a10+a12=5a8=120,∴a8=24.又a8,a10,a12成等差数列,∴2a10-a12=a8=24.5.在等差数列{an}中,a3+a12=60,a6+a7+a8=75,则()A.an=10n+45B.an=6n-24C.an=10n-45D.an=6n+24答案C解析∵a6+a7+a8=3a7=75,∴a7=25.∵a3+a12=a7+a8=60,∴a8=60-25=35.∴公差d=a8-a7=10.∴an=a7+(n-7)d=25+(n-7)·10=10n-45.6.设{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0B.372C.100D.-37答案C解析∵{an},{bn}都是等差数列,∴{an+bn}也是等差数列.∵a1+b1=25+75=100,a2+b2=100,∴{an+bn}的公差为0.∴a37+b37=100.7.(2015·汉口高二检测)下列说法正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列答案C8.在等差数列{an}中,若a1+a6+a8+a10+a15=120,则a9-13a11的值为()A.14B.15C.16D.17答案C9.设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为()A.1B.2C.4D.6答案B解析设前三项为a-d,a,a+d,则由a-d+a+a+d=12,知a=4.又由(4-d)·4·(4+d)=48知d2=4.∵{an}为递增数列,∴d=2.10.设方程(x2-2x+m)·(x2-2x+n)=0的四个根组成一个首项为14的等差数列,则|m-n|=()A.1B.343C.12D.38答案C解析∵方程x2-2x+m=0和x2-2x+n=0的一次项系数相同,由根与系数的关系及等差数列性质可得.∴可令x1,x4为方程x2-2x+m=0的两根,x2,x3为方程x2-2x+n=0的两根.令x1=14,则x4=2-14=74.从而x2=34,x3=54.∴m=x1x4=716,n=x2x3=1516.∴|m-n|=12.11.在等差数列{an}中,已知am+n=A,am-n=B,则am=__________.答案A+B2解析∵am-n,am,am+n成等差数列,∴2am=A+B,∴am=A+B2.12.已知{an}为等差数列,a15=8,a60=20,则a75=__________.答案24解析∵a15,a30,a45,a60,a75成等差数列,∴公差d=20-84-1=4.∴a75=8+(5-1)·4=24.13.已知等差数列{an}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=________.答案27解析a3+a6+a9=2(a2+a5+a8)-(a1+a4+a7)=2×33-39=27.14.四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.解析设四个数为a-3d,a-d,a+d,a+3d,据题意得,(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=94⇒2a2+10d2=47.①4又(a-3d)(a+3d)=(a-d)(a+d)-18⇒8d2=18⇒d=±32代入①得a=±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1.15.已知等差数列{an}的公差d0,且a3a7=-12,a4+a6=-4,求{an}的通项公式.解析由等差数列的性质,得a3+a7=a4+a6=-4.又∵a3a7=-12,∴a3,a7是方程x2+4x-12=0的两根.又∵d0,∴a3=-6,a7=2.∴an=a3+(n-3)d=-6+2(n-3)=2n-12.16.已知等差数列{an}的首项为a1,公差为d,且a11=-26,a51=54,求a14的值.你能知道该数列从第几项开始为正数吗?解析由等差数列an=a1+(n-1)d列方程组:a1+10d=-26,a1+50d=54,解得a1=-46,d=2.所以a14=-46+13×2=-20.所以an=-46+(n-1)·2=2n-48.令an≥0,即2n-48≥0⇒n≥24.所以从第25项开始,各项均为正数.