1第1讲空间几何体、三视图、表面积与体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019点到平面的距离·T16多面体的棱长与面的个数·T16多面体的体积·T162018圆柱的表面积计算·T5圆锥的体积计算·T16三视图与数学文化·T3空间几何体的三视图、直观图及最短路径问题·T9与外接球有关的空间几何体体积的最值问题·T122017空间几何体的三视图及组合体体积的计算·T6球的内接圆柱、圆柱体积的计算·T9长方体的性质及其外接球的表面积的计算·T15(1)“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第6~7题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度较高,一般会出现在第11、12、16题的位置上,本小题虽然难度较高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图[例1](2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2[解析]先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=25.[答案]B[解题方略]与三视图有关的问题主要包括两个方面一是定形,即确定三视图对应几何体的结构特征,熟练掌握规则几何体的三视图是由三视图还原几何体的基础,按以下步骤可轻松解决.应该注意的是,三视图中的虚线表示几何体中看不到的线.二是建立三视图中的数据与几何体的几何度量之间的关系.其中,三视图的画法是解决该问题的重要依据,其画法的基本要求与规则如下.①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽.[跟踪训练]1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A.故选A.2.(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长3与最短的棱长的比值是()A.52B.2C.355D.32解析:选D在棱长为2的正方体中还原该四面体PABC如图所示,其中最短的棱为AB和BC,最长的棱为PC.因为正方体的棱长为2,所以AB=BC=2,PC=3,所以该四面体最长的棱长与最短的棱长的比值为32.故选D.考点二几何体的表面积与体积[例2](1)(2019·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为()A.1-π4B.3+π2C.2+π4D.4(2)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π(3)(2019·全国卷Ⅲ)学生到工厂劳动实践,利用3D打印技术制作4模型.如图,该模型为长方体ABCDA1B1C1D1挖去四棱锥OEFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.[解析](1)由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S=2×1×1-14×π×12+2×(1×1)+14×2π×1×1=4.故选D.(2)法一:(分割法)由题意知,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V1=π×32×4=36π;上半部分是一个底面半径为3,高为6的圆柱的一半,其体积V2=12×π×32×6=27π.所以该组合体的体积V=V1+V2=36π+27π=63π.法二:(补形法)由题意知,该几何体是一圆柱被一平面截去一部分后所得的几何体,在该几何体上方再补上一个与其相同的几何体,让截面重合,则所得几何体为一个圆柱,该圆柱的底面半径为3,高为10+4=14,该圆柱的体积V1=π×32×14=126π.故该几何体的体积为圆柱体积的一半,即V=12V1=63π.(3)由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6cm和4cm,故V挖去的四棱锥=13×12×4×6×3=12(cm3).又V长方体=6×6×4=144(cm3),所以模型的体积为V长方体-V挖去的四棱锥=144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).[答案](1)D(2)B(3)118.8[解题方略]1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法5公式法直接根据常见柱、锥、台等规则几何体的体积公式计算等积法根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等割补法把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体[跟踪训练]1.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π解析:选B设圆柱的轴截面的边长为x,则x2=8,得x=22,∴S圆柱表=2S底+S侧=2×π×(2)2+2π×2×22=12π.故选B.2.如图,在正三棱柱ABCA1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥PABA1的体积为_______.解析:由题意,得V三棱锥PABA1=V三棱锥CABA1=V三棱锥A1ABC=13S△ABC·AA1=13×34×32×3=934.答案:9343.(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.6解析:如图所示,在四棱锥VABCD中,O为正方形ABCD的中心,也是圆柱下底面的中心,由四棱锥底面边长为2,可得OC=1.设M为VC的中点,过点M作MO1∥OC交OV于点O1,则O1即为圆柱上底面的中心.∴O1M=12OC=12,O1O=12VO.∵VO=VC2-OC2=2,∴O1O=1.可得V圆柱=π·O1M2·O1O=π×122×1=π4.答案:π4考点三多面体与球的切、接问题[经典母题][例3]在三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,三棱锥PABC的外接球的体积为()A.272πB.2732πC.273πD.27π[解析]∵在三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,∴△PAB≌△PBC≌△PAC.∵PA⊥PB,∴PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.∵正方体的体对角线长为32+32+32=33,∴其外接球半径R=332.因此三棱锥PABC的外接球的体积V=4π3×3323=2732π.[答案]B[母题变式]1.在本例条件下,求三棱锥PABC的内切球的半径为________.7解析:由本例解析知,S△PAB=S△PBC=S△PAC=92,S△ABC=12×32×32×sin60°=932.设三棱锥PABC的内切球的半径为r,则VPABC=13AP·S△PBC=13(S△PAC+S△PBA+S△PBC+S△ABC)r,∴13×3×92=1392×3+932r,解得r=3-32,∴所求三棱锥内切球的半径为3-32.答案:3-322.若本例变为:已知A,B,C,D是球O上不共面的四点,且AB=BC=AD=1,BD=AC=2,BC⊥AD,则球O的体积为________.解析:因为AB=BC=1,AC=2,所以AB2+BC2=AC2,所以BC⊥AB,又BC⊥AD,AD∩AB=A,所以BC⊥平面ABD.因为AB=AD=1,BD=2,所以AB2+AD2=BD2,所以AB⊥AD,此时可将点A,B,C,D看成棱长为1的正方体上的四个顶点,球O为正方体的外接球,设球O的半径为R,故2R=12+12+12,所以R=32,则球O的体积V=43πR3=32π.答案:32π[解题方略]1.空间几何体与球接、切问题的求解方法(1)确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.(2)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(3)补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.2.与球有关的组合体的常用结论(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).8(2)正方体的外接球、内切球①外接球:球心是正方体中心,半径r=32a(a为正方体的棱长);②内切球:球心是正方体中心,半径r=a2(a为正方体的棱长).[跟踪训练]1.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称为“堑堵”.现有一块底面两直角边长分别为3和4、侧棱长为12的“堑堵”形石材,将之切削、打磨,加工成若干个相同的石球,并让石球的体积最大,则剩余的石料体积为()A.72-16πB.72-12πC.72-8πD.72-6π解析:选C当每个石球与各侧面相切时,符合题意,此时设每个石球的半径为r.由半径为r的圆与两直角边长分别为3和4的直角三角形内切,结合等面积法可得12×(3+4+5)×r=12×3×4,解得r=1.由题意易知,可以得到6个这样的石球.6个半径为1的石球的体积为6×43×π×13=8π,则剩余的石料体积为12×3×4×12-8π=72-8π.故选C.2.(2018·全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥DABC体积的最大值为()A.123B.183C.243D.543解析:选B由等边△ABC的面积为93,可得34AB2=93,所以AB=6,所以等边△ABC的外接圆的半径为r=33AB=23.设球的半径为R,球心到等边△ABC的外接圆圆心的距离为d,则d=R2-r2=16-12=2.所以三棱锥DABC高的最大值为2+4=6,所以三棱锥DABC体积的最大值为13×93×6=183.故选B.3.(2017·江苏高考)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是9________.解析:设球O的半径为R,因为球O与圆柱O1O2的上、下底面及母线均相切,所以圆柱的底面半径为R、高为2R,所以V1V2=πR2·2R43πR3=32.答案:324.(2019·福建五校第二次联考)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为________.解析:如图,设BC的中点为D,B1C1的中点为D1,连接DD1,取其中点O′,连