(浙江专用)2021版新高考数学一轮复习 第八章 立体几何与空间向量 4 第4讲 直线、平面平行的判

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第4讲直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b3.线、面平行中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面α内无数条直线平行,则a∥α.()2(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()答案:(1)×(2)×(3)×(4)×(5)√[教材衍化]1.(必修2P61A组T1(1)改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.(必修2P58练习T3改编)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D.若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.3.(必修2P62A组T3改编)如图,在正方体ABCD­A1B1C1D1中,点E为DD1的中点,则BD1与平面AEC的位置关系为________.解析:连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,3而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案:平行[易错纠偏](1)对空间平行关系的转化条件理解不够致误;(2)对面面平行判定定理的条件“平面内两相交直线”认识不清致误;(3)对面面平行性质定理理解不深致误.1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一的与a平行的直线解析:选A.当直线a在平面β内且过B点时,不存在与a平行的直线.故选A.2.下列条件中,能判断两个平面平行的是________.①一个平面内的一条直线平行于另一个平面;②一个平面内的两条直线平行于另一个平面;③一个平面内有无数条直线平行于另一个平面;④一个平面内任何一条直线都平行于另一个平面.解析:由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.显然只有④符合条件.答案:④3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形4线面平行的判定与性质(高频考点)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题的某一问中.主要命题角度有:(1)线面位置关系的判断;(2)线面平行的证明;(3)线面平行性质的应用.角度一线面位置关系的判断设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】D角度二线面平行的证明(2020·浙江省六市六校联盟模拟)如图所示,在三棱柱ABC­A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,点D为AC的中点,AA1=AB=2.(1)求证:AB1∥平面BC1D;(2)若BC=3,求三棱锥D­BC1C的体积.【解】(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD.因为四边形BCC1B1是平行四边形.所以点O为B1C的中点.因为点D为AC的中点,所以OD为△AB1C的中位线,所以OD∥AB1.因为OD⊂平面BC1D,AB1⊄平面BC1D,所以AB1∥平面BC1D.(2)在三棱柱ABC­A1B1C1中,5侧棱CC1∥AA1.又因为AA1⊥平面ABC,所以侧棱CC1⊥平面ABC,故CC1为三棱锥C1­BCD的高,A1A=CC1=2,因为S△BCD=12S△ABC=1212BC·AB=32,所以VD­BCC1=VC1­BCD=13CC1·S△BCD=13×2×32=1.角度三线面平行性质的应用如图,在四棱柱ABCD­A1B1C1D1中,点E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.证明:FG∥平面AA1B1B.【证明】在四棱柱ABCD­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D,又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG,因为BB1∥CC1,所以BB1∥FG,而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()6解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.2.如图,四棱锥P­ABCD中,底面ABCD为矩形,点F是AB的中点,点E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.解:(1)证明:连接BD与AC交于点O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)PC的中点G即为所求的点.证明如下:设点G为PC的中点,连接GE、FG,因为E为PD的中点,所以GE綊12CD.又F为AB的中点,且四边形ABCD为矩形,7所以FA綊12CD.所以FA綊GE.所以四边形AFGE为平行四边形,所以FG∥AE.又FG⊄平面AEC,AE⊂平面AEC,所以FG∥平面AEC.面面平行的判定与性质如图所示,在三棱柱ABC­A1B1C1中,点E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.【证明】(1)因为点G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EFA1∥平面BCHG.1.(变问法)在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,8所以HD∥平面A1B1BA.2.(变问法)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.(2020·嘉兴调研)如图,AB∥平面α∥平面β,过A,B的直线m,n分别交α,β于点C,E和D,F,若AC=2,CE=3,BF=4,则BD的长为()9A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即ACAE=BDBF,所以BD=AC·BFAE=2×45=85.2.如图所示,四边形ABCD与四边形ADEF都为平行四边形,点M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,10所以平面BDE∥平面MNG.立体几何中的探索性问题如图,四棱锥P­ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功