1课后作业(二十六)复习巩固[答案]B2.下列各式成立的是()[解析]被开方数是和的形式,运算错误,A选项错;ba2=b2a2,B选项错;6-320,(-3)130,C选项错,故选D.[答案]D3.若a12,则化简42a-12的结果是()A.2a-1B.-2a-1C.1-2aD.-1-2a[解析]∵a12,∴2a-10,∴2a-12=1-2a,∴42a-12=1-2a.[答案]C2[答案]C5.若(1-2x)-34有意义,则x的取值范围是()A.x∈RB.x∈R且x≠12C.x12D.x12[解析]∵(1-2x)-34=141-2x3,∴1-2x0,得x12.[答案]D[答案]5[答案]-233[答案]229三、解答题9.计算下列各式的值:10.(1)已知x=12,y=23,求x+yx-y-x-yx+y的值;(2)已知x-3+1=a(a为常数),求a2-2ax-3+x-6的值.[解](1)x+yx-y-x-yx+y=x+y2x-y-x-y2x-y=4xyx-y.将x=12,y=23代入上式得4原式=412×2312-23=413-16=-2413=-83.(2)∵x-3+1=a,∴x-3=a-1.又∵x-6=(x-3)2,∴x-6=(a-1)2.∴a2-2ax-3+x-6=a2-2a(a-1)+(a-1)2=a2-(2a2-2a)+(a2-2a+1)=1.综合运用11.设a0,将a2a·3a2表示成分数指数幂,其结果是()[答案]C12.设2a=5b=m,且1a+1b=2,则m等于()A.10B.10C.20D.100[答案]A13.设α,β是方程5x2+10x+1=0的两个根,则2α·2β=________,(2α)β=________.[解析]利用一元二次方程根与系数的关系,得α+β=-2,αβ=15.即2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.[答案]14215514.化简10-43+22的值为________.[解析]原式=10-42+1=22-42+22=2-2[答案]2-2(2)∵a,b是方程x2-6x+4=0的两个实数根,∴a+b=6,ab=4.∵ab0,∴ab,∴a-ba+b0.∵a-ba+b2=a+b-2aba+b+2ab=6-246+24=210=15,∴a-ba+b=15=55.6