步进电机的精确控制方法研究摘要随着微电子和计算机技术的不断进步和高速的更新换代,作为机电一体化进程中制造出来的一种主要产品的步进电机的产量和数量也逐渐增多。而且对于步进电机的应用也是是十分广泛的,比如很多的自动控制系统中大部分都会涉及到步进电机的使用。众所周知,对于步进电机在应用方面的优势也是十分明显的,比如在对一些频带宽度较大的脉冲信号的控制,以此控制来实现对点击相关部件的速度调节上,实现速度控制以及相关部件的启动和停止,或者是控制相关部件的正向或者反向转动。另外一个很大的优势就是步进电机可以实现整个构件开环系统不仅仅结构设计简便易行,而且造价低廉,工作性能相当稳定可靠。当前对步进电机的研究焦点主要集中在对步进电机的驱动控制上,然而驱动控制也是步进电机的一个重要的关键技术。步进电机的控制技术在很多的行业和领域里都有广泛的应用。对于步进电机相关技术的研究国内很多的专家和学者都从不同角度不同侧面给出了详细的论断。随着要求缩短步进电机的响应时间、提高运行速度等问题的提出,国内外的研究人员针对速度控制,提出了建立在线性速度模型和指数速度模型等数学模型上的控制方式,但都存在一定的问题;当解决要求步进电机有更小的步距角,更高的分辨率,或者为减小步进电机本身所固有的低频振动、噪声等问题时,出现了步进电机细分驱动技术,目前较为常见的有斩波恒流驱动、脉冲宽度调制驱动、电流矢量恒幅均匀旋转驱动等技术,这些驱动技术虽能满足特定场合的技术要求,但缺乏一定的灵活性。本文的主要研究内容如下:对步进电机及其细分驱动系统进行了详细阐述,研究了步进电机的工作原理、运行性能,分析了步进电机细分驱动系统的作用和适用性,并对国内外步进电机细分驱动系统的研究作了简要介绍。研究了步进电机在加减速控制过程中脉冲频率曲线的设计和他们的优缺点,并提出以步进电机控制系统模型和矩频特性为依据,推导出其加减速控制过程中的线性加正弦函数,在不发生失步和过冲的前提下,能够缩短步进电机的加减速时间,提高运行速度,充分发挥步进电机的工作性能。为解决消除电机的低频振荡,提高电机的输出转矩、分辨率和步距的均匀度,解决步进电机高精度细分和平滑运行、动态适应多级细分的技术难题,研究了步进电机的传统控制方法和细分控制原理,在控制方法上,本文通过分析两相混合式步进电机的运行原理,推导了其数学模型。在此基础上提出了电流矢量恒幅均匀旋转与可变细分相结合的控制策略,提出了一种新的趋圆自适应驱动模型,并给出了控制方法。通过实时计算的方式控制各相绕组电流,使其按阶梯正旋规律改变大小和方向,实现将步进电机一个整步均匀地分为若干个更细的微步,改变了以往细分控制参数需要事先计算的方式,节省了存贮空间,并能动态的适应多级细分的情况。最后,通过模拟仿真等方法的试验研究,证明了这种模型和方法的可行性。本文的研究对于计算机技术应用于步进电机的速度控制和细分驱动控制方式的深入研究,拓宽步进电机的应用领域具有积极的意义。关键词:步进电机;速度控制;细分驱动;自适应;仿真第一章绪论1.1步进电机概述步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。其原始模型是起源于1830年至1860年间。1870年前后开始以控制为目的的尝试,应用于氩弧灯的电极输送机构中。这被认为是最初的步进电机。二十世纪初,在电话自动交换机中广泛使用了步进电机。由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。到了八十年代后,由于廉价的微型计算机以多功能的姿态出现,步进电机的控制方式更加灵活多样。步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。步进电机的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。我国的步进电机在二十世纪七十年代初开始起步,七十年代中期至八十年代中期为成品发展阶段,新品种和高性能电机不断开发,目前,随着科学技术的发展,特别是永磁材料、半导体技术、计算机技术的发展,使步进电机在众多领域得到了广泛应用。1.2步进电机控制技术及发展概况作为一种控制用的特种电机,步进电机无法直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。在微电子技术,特别计算机技术发展以前,控制器(脉冲信号发生器)完全由硬件实现,控制系统采用单独的元件或者集成电路组成控制回路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。这就使得需要针对不同的电机开发不同的驱动器,开发难度和开发成本都很高,控制难度较大,限制了步迸电机的推广。由于步进电机是一个把电脉冲转换成离散的机械运动的装置,具有很好的数据控制特性,因此,计算机成为步进电机的理想驱动源,随着微电子和计算机技术的发展,软硬件结合的控制方式成为了主流,即通过程序产生控制脉冲,驱动硬件电路。单片机通过软件来控制步进电机,更好地挖掘出了电机的潜力。因此,用单片机控制步进电机已经成为了一种必然的趋势,也符合数字化的时代趋势吲。步进电机从其结构形式上可分为反应式步进电机、永磁式步进电机、混合式步进电机、单相步进电机、平面步进电机等多种类型,在我国所采用的步进电机中以反应式步进电机为主。步进电机的运行性能与控制方式有密切的关系,步进电机控制系统从其控制方式来看,可以分为以下三类:1.开环控制系统2.闭环控制系统3.半闭环控制系统目前半闭环控制系统在实际应用中一般归类于开环或闭环系统中。1.2.1开环控制步进电机最简单的控制方式就是开环控制系统,其原理框图如图1.1所示:在这种控制方式下,步进电机控制脉冲的输入并不依赖于转子的位置,而是按一个固定的规律发出控制脉冲,步进电机仅依靠这一系列既定的脉冲而工作,这种控制方式由于步进电机的独特性而比较适合于控制步进电机,适合于我国的国情。这种种控制方式的特点㈦是:控制简单、实现容易、价格较低,这种控制方式特别在开环控制中,负载位置对控制电路没有反馈,因此,步进电机必须正确地响应每次励磁的变化,如果励磁变化太快,电机不能移动到新的位置,那么实际负载位置与理想位置就会产生一个偏差,在负载基本不变时,控制脉冲序列的产生较为简单,但是在负载的变化可能较大的场合,控制脉冲序列的产生就很难照顾全面,就有可能出现失步等现象。目前随着微处理器应用的普及,依靠单片机,可以实现一些复杂的步进电机的控制脉冲序列的产生。但是开环控制仍存在以下问题阻:1)起动受到限制。一般要通过控N#l-力n的速度设定按一定的升速规律实现起动,必须有足够长的升速过程。这导致它在速度变化率较大的场合的使用受到限制。2)系统存在振荡区,在使用中必须避开振荡点,否则速度波动很大,严重时可能导致失步。3)抗负载波动的能力较差。如果负载出现冲击转矩,电机可能失步或堵转。所以,一般不能满载运行,必须留有足够的余量。这导致电机的容量得不到充分利用。以上情况限制了步进电机的应用范围,因为在许多应用场合,希望提高电机的快速性,要求电机的加速时间越短越好。而在开环控制系统中,步进电机的速度完全决定于输入脉冲频率,其输入脉冲序列是预先设定的,不依赖于电机转子的位置而调节,不能保证每步都能在最佳切换角切换。因而,很难以最短的时间达到正常工作要求速度,并且易发生失步。但由于它较易实现,价格低廉,所以目前所采用的控制方式大多数为开环控制。而对于其失步和精度问题的根本解决途径是建立合理的脉冲序列控制数学模型,求出合理有效的控制函数。1.2.2翻环控制由于步进电机开环控制系统存在精度不高、丢步等缺点,所以在精度要求较高的场合可以采用步进电机的闭环控制系统n3,其原理框图如图1.2所示:这种控制方式是直接或间接地检测出转子(或负载)的位置或速度,然后通过反馈和适当的处理,自动地给出步进电机的驱动脉冲序列,这个驱动脉冲序列是根据负载或转子的位置而随时变化的。这种控制方式的实现方法很多,在要求精度很高的场合,结合加减速过程控制技术细分驱动技术,可以实现很高的位置精度要求。但这种控制方式也有一些问题,例如,闭环的实现需要增加高精度的检测、反馈及控制元件,使整一个伺服系统的实现变得复杂,且价格急剧上升,甚至使步进电机应用的低价优势丧失。另外,还有系统的稳定性等问题。为了改善步进电机失步,高速扭矩衰减等问题,采用有源阻尼和无编码器堵转检测技术的闭环步进控制技术正逐步得到应用,并已有相应的产品推向市场,如Oriental公司的QStep系列产品、ParkerHannifan/compumotor公司的Gemini系列细分驱动产品等。经过持续的改进和升级,堵转检测和抗谐振技术将与今天的细分驱动技术一样得到普及嘲,从而使步进电机性能得到大大提升。但在这个研究方向上,技术上一直没有太大的突破,也还不成熟,还没有得到很广泛的应用。但是这将是以后步进电机控制的发展趋势。1.2.3步进电机加减速过程控制技术正因为步进电机的广泛应用,对步进电机的控制的研究也越来越多,在启动或加速时如果步进脉冲变化太快,转子由于惯性而跟随不上电信号的变化,产生堵转或失步:在停止或减速时由于同样原因则可能产生超步。为防止堵转、失步和超步,提高工作频率,要对步进电机进行升降速控制。步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步力矩而启动的,为了不发生失步,启动频率是不高的。特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差十倍之多。步进电机的起动频率特性使步进电机启动时不能直接达到运行频率,而要有一个启动过程,即从一个低的转速逐渐升速到运行转速。停止时运行频率不能立即降为零,而要有一个高速逐渐降速到零的过程。从步进电机的频率一力矩曲线(图1.3)可知,步进电机的输出力矩随着脉冲频率的上升而下降,启动频率越高,启动力矩就越小,带动负载的能力越差,启动时会造成失步,而在停止时又会发生过冲。要使步进电机快速的达到所要求的速度又不失步或过冲,其关键在于使加速过程中,加速度所要求的力矩既能充分利用各个运行频率下步进电机所提供的力矩,又不能超过这个力矩。因此,步进电机的运行一般要经过加速、匀速、减速三个阶段,要求加减速过程时间尽量的短,恒速时间尽量长。特别是在要求快速响应的工作中,从起点到终点运行的时间要求最短,这就必须要求加速、减速的过程最短,而恒速时的速度最高。目前,国内外的科技工作者对步进电机的速度控制技术进行了大量的研究,建立了多种加减速控制数学模型,如指数模型、线性模型等,并在此基础上设计开发了多种控制电路,改善了步进电机的运动特性,推广了步进电机的应用范围。指数加减速考虑了步进电机固有的矩频特性,既能保证步进电机在运动中不失步,又充分发挥了电机的固有特性,缩短了升降速时间,但因电机负载的变化,很难实现:而线性加减速仅考虑电机在负载能力范围的角速度与脉冲成正比这一关系,不因电源电压、负载环境的波动而变化的特性,这种升速方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步。综上所述,为缩短步进电机的加速时间,在不发生失步和过冲的前提下,应尽量提高其运行速度,才能充分发挥步进电机的工作性能。这就需要继续在步进电机的速度控制技术方面进行研究,找到尽可能合理的加减速控制数序模型,方便微处理器的控制要求,进一步提高步进电机的运行效率。1.2.4步进电机的细分驱动控制步进电机由于受到自