专题15-椭圆、双曲线、抛物线(教学案)-2018年高考理数二轮复习精品资料(原卷版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.以客观题形式考查圆锥曲线的标准方程、圆锥曲线的定义、离心率、焦点弦长问题、双曲线的渐近线等,可能会与数列、三角函数、平面向量、不等式结合命题,若与立体几何结合,会在定值、最值、定义角度命题.2.每年必考一个大题,相对较难,且往往为压轴题,具有较高的区分度.平面向量的介入,增加了本部分高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,本部分还经常结合函数、方程、不等式、数列、三角等知识结合进行综合考查.一、椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a|F1F2|)||PF1|-|PF2||=2a(2a|F1F2|)定点F和定直线l,点F不在直线l上,P到l距离为d,|PF|=d标准方程焦点在x轴上x2a2+y2b2=1(ab0)焦点在x轴上x2a2-y2b2=1(a0,b0)焦点在x轴正半轴上y2=2px(p0)图象几何性质范围|x|≤a,|y|≤b|x|≥a,y∈Rx≥0,y∈R顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴、y轴和原点对称关于x轴对称焦点(±c,0)p2,0轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e=ca=1-b2a2(0e1)e=ca=1+b2a2(e1)e=1准线x=-p2通径|AB|=2b2a|AB|=2p渐近线y=±bax【误区警示】1.求椭圆、双曲线方程时,注意椭圆中c2=a2+b2,双曲线中c2=a2-b2的区别.2.注意焦点在x轴上与y轴上的双曲线的渐近线方程的区别.3.平行于双曲线渐近线的直线与双曲线有且仅有一个交点;平行于抛物线的轴的直线与抛物线有且仅有一个交点.考点一椭圆的定义及其方程例1.(2017·北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.【2016高考浙江理数】已知椭圆C1:22xm+y2=1(m1)与双曲线C2:22xn–y2=1(n0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.mn且e1e21B.mn且e1e21C.mn且e1e21D.mn且e1e21【变式探究】已知椭圆E:x2a2+y2b2=1(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为()A.x245+y236=1B.x236+y227=1C.x227+y218=1D.x218+y29=1考点二椭圆的几何性质例2.【2016高考新课标3理数】已知O为坐标原点,F是椭圆C:22221(0)xyabab的左焦点,,AB分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【变式探究】(2015·北京,19)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.考点三双曲线的定义及标准方程例3.(2017·全国卷Ⅱ)若双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.3C.2D.233【变式探究】【2016高考天津理数】已知双曲线2224=1xyb(b0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为()(A)22443=1yx(B)22344=1yx(C)2224=1xyb(D)2224=11xy【变式探究】(2015·福建,3)若双曲线E:x29-y216=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.3考点四双曲线的几何性质例4.【2016高考新课标1卷】已知方程222213xymnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()(A)1,3(B)1,3(C)0,3(D)0,3【变式探究】(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5B.2C.3D.2考点五抛物线的定义及方程例5.(2017·全国卷Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为()A.5B.22C.23D.33【变式探究】【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线22(p0)ypx上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为()(A)33(B)23(C)22(D)1【变式探究】过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点,若|AF|=3,则△AOB的面积为()A.22B.2C.322D.22考点六抛物线的几何性质例6.(2017·全国卷Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.【2016高考新课标1卷】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8【变式探究】(2015·天津,6)已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y2=47x的准线上,则双曲线的方程为()A.x221-y228=1B.x228-y221=1C.x23-y24=1D.x24-y23=11.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.102.【2017课标II,理9】若双曲线C:22221xyab(0a,0b)的一条渐近线被圆2224xy所截得的弦长为2,则C的离心率为()A.2B.3C.2D.2333.【2017浙江,2】椭圆22194xy的离心率是A.133B.53C.23D.594.【2017天津,理5】已知双曲线22221(0,0)xyabab的左焦点为F,离心率为2.若经过F和(0,4)P两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)22144xy(B)22188xy(C)22148xy(D)22184xy5.【2017北京,理9】若双曲线221yxm的离心率为3,则实数m=_________.6.【2017课标1,理】已知双曲线C:22221xyab(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.7.【2017课标II,理16】已知F是抛物线C:28yx的焦点,M是C上一点,FM的延长线交y轴于点N。若M为FN的中点,则FN。8.【2017课标3,理5】已知双曲线C:22221xyab(a>0,b>0)的一条渐近线方程为52yx,且与椭圆221123xy有公共焦点,则C的方程为A.221810xyB.22145xyC.22154xyD.22143xy9.【2017山东,理14】在平面直角坐标系xOy中,双曲线222210,0xyabab的右支与焦点为F的抛物线220xpxp交于,AB两点,若4AFBFOF,则该双曲线的渐近线方程为.10.【2017课标1,理20】已知椭圆C:2222=1xyab(ab0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.11.【2017课标II,理】设O为坐标原点,动点M在椭圆C:2212xy上,过M作x轴的垂线,垂足为N,点P满足2NPNM。(1)求点P的轨迹方程;(2)设点Q在直线3x上,且1OPPQ。证明:过点P且垂直于OQ的直线l过C的左焦点F。12.【2017山东,理21】在平面直角坐标系xOy中,椭圆E:22221xyab0ab的离心率为22,焦距为2.(Ⅰ)求椭圆E的方程;(Ⅱ)如图,动直线l:132ykx交椭圆E于,AB两点,C是椭圆E上一点,直线OC的斜率为2k,且1224kk,M是线段OC延长线上一点,且:2:3MCAB,M的半径为MC,,OSOT是M的两条切线,切点分别为,ST.求SOT的最大值,并求取得最大值时直线l的斜率.13.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,12)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A为线段BM的中点.14.【2017天津,理19】设椭圆22221(0)xyabab的左焦点为F,右顶点为A,离心率为12.已知A是抛物线22(0)ypxp的焦点,F到抛物线的准线l的距离为12.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD△的面积为62,求直线AP的方程.15.【2017江苏,8】在平面直角坐标系xOy中,双曲线2213xy的右准线与它的两条渐近线分别交于点P,Q,其焦点是12,FF,则四边形12FPFQ的面积是▲.16.【2017江苏,17】如图,在平面直角坐标系xOy中,椭圆2222:1(0)xyEabab的左、右焦点分别为1F,2F,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点1F作直线1PF的垂线1l,过点2F作直线2PF的垂线2l.(1)求椭圆E的标准方程;(2)若直线E的交点Q在椭圆E上,求点P的坐标.1.【2016高考新课标1卷】已知方程222213xymnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()(A)1,3(B)1,3(C)0,3(D)0,32.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线22(p0)ypx上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为()(A)33(B)23(C)22(D)13.【2016高考新课标2理数】已知12,FF是双曲线2222:1xyEab的左,右焦点,点M在E上,1MF与x轴垂直,211sin3MFF,则E的离心率为()(A)2(B)32(C)3(D)24.【2016高考浙江理数】已知椭圆C1:22xm+y2=1(m1)与双曲线C2:22xn–y2=1(n0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.mn且e1e21B.mn且e1e21C.mn且

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功