【高等数学基础】形考作业4答案第5章不定积分第6章定积分及其应用(一)单项选择题⒈若)(xf的一个原函数是x1,则)(xf(D).A.xlnB.21xC.x1D.32x⒉下列等式成立的是(D).A)(d)(xfxxfB.)()(dxfxfC.)(d)(dxfxxfD.)(d)(ddxfxxfx⒊若xxfcos)(,则xxfd)((B).A.cxsinB.cxcosC.cxsinD.cxcos⒋xxfxxd)(dd32(B).A.)(3xfB.)(32xfxC.)(31xfD.)(313xf⒌若cxFxxf)(d)(,则xxfxd)(1(B).A.cxF)(B.cxF)(2C.cxF)2(D.cxFx)(1⒍下列无穷限积分收敛的是(D)A.1xdxB.dxex0C.1xdxD.12xdx(二)填空题⒈函数)(xf的不定积分是dxxf)(.⒉若函数)(xF与)(xG是同一函数的原函数,则)(xF与)(xG之间有关系式)cxGxF常数()()(.⒊xxded22xe⒋xxd)(tancxtan⒌若cxxxf3cosd)(,则)(xf)3cos(9x⒍335d)21(sinxx3⒎若无穷积分1d1xxp收敛,则0p(三)计算题⒈cxxdxxxx1sin)1(1cosd1cos2⒉cexdexxxxx22de⒊cxxdxxxx)ln(ln)(lnln1dln1⒋cxxxxdxxxxxx2sin412cos212cos212cos21d2sin⒌e11e121)ln3(21)ln3d()ln3(dln3exxxxxx⒍414141212121de21022102102102eeedxexexxxxxx⒎41221ln2dln2112e1exdxxxxxxee⒏eeeexedxxxxxxx1121e1212111ln1dln(四)证明题⒈证明:若)(xf在],[aa上可积并为奇函数,则0d)(aaxxf.证:aaaaaaaadttfdttfdttfdxxftx)()()()(令0)()()(aaaaaadxxfdxxfdxxf证毕⒉证明:若)(xf在],[aa上可积并为偶函数,则aaaxxfxxf0d)(2d)(.证:aaaaxxfxxfxxf00d)(d)(d)(aaaxftftfxxftx000)(dt)(dt)(d)(,是偶函数则令证毕aaaaaaaxxfxxfxxfxxfxxfxxf00000d)(2d)(d)(d)(d)(d)(⒊证明:aaaxxfxfxxf0d)]()([d)(证:aaaaaaxxfxxfxxfxxfxxf0000d)(d)(d)(d)(d)(=aaaxxfxfxxfxxf000d)]()([d)(d)(证毕