12.3互逆命题(1)七年级(下册)初中数学12.3互逆命题(1)两直线平行,同位角相等.条件结论同位角相等,两直线平行.条件结论【问题情境】12.3互逆命题(1)如果a+b>0,那么a>0,b>0如果a>0,b>0,那么a+b>0【问题情境】条件结论条件结论12.3互逆命题(1)两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.1.下列各组命题是否是互逆命题:(1)“正方形的四个角都是直角”与“四个角都是直角的四边形是正方形”;(2)“等于同一个角的两个角相等”与“如果两个角都等于同一个角,那么这两个角相等”;(3)“对顶角相等”与“如果两个角相等,那么这两个角是对顶角”;(4)“同位角相等,两直线平行”与“同位角不相等,两直线不平行”.12.3互逆命题(1)【试一试】2.说出下列命题的逆命题,并与同学交流.(1)如果a2=b2,那么a=b;(2)如果两个角是对顶角,那么它们的平分线组成一个平角;(3)末位数字是5的数,能被5整除;(4)锐角与钝角互为补角.12.3互逆命题(1)【试一试】逆命题:如果a=b,那么a2=b2.逆命题:如果两个角的平分线组成一个平角,那么这两个角是对顶角.逆命题:能被5整除的数的末位数字是5.逆命题:互为补角的两个角一个是锐角一个是钝角.举反例说明下列命题是假命题:(1)如果|a|=|b|,那么a=b;(2)任何数的平方大于0;(3)两个锐角的和是钝角;(4)如果一点到线段两端的距离相等,那么这点是这条线段的中点.12.3互逆命题(1)【练一练】第一次数学危机公元前五世纪,毕达哥拉斯学派认为“万物皆是数”——任何数都可以表示为整数或整数的比.他的门徒希伯索斯发现一个反例:当正方形边长为整数1时,对角线的长就无法用整数表示!从而引发第一次数学危机.希伯索斯因为没有按毕达哥拉斯“保持沉默”的要求,把这个问题公之于众,结果被投尸大海,葬身鱼腹,造成历史上震惊数学界的无理数发现惨案.12.3互逆命题(1)【拓展延伸】12.3互逆命题(1)著名的反例公元1640年,法国著名数学家费尔马发现:220+1=3,221+1=5,222+1=17,223+1=257,224+1=65537……而3、5、17、257、65537都是质数,于是费尔马猜想:对于一切自然数n,22n+1都是质数,可是,到了1732年,数学家欧拉发现:225+1=4294967297=641×6700417.这说明了22n+1是一个合数,从而否定了费尔马的猜想.【拓展延伸】【小结】本节课你学会了什么?你有什么收获?12.3互逆命题(1)课本P161习题12.3第1、2题.7.1探索直线平行的条件(1)【课后作业】