2019年山东省枣庄市中考数学试卷(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。每小题选对得3分,选错、不选或选出的答案超过一个均计零分。1.(3分)下列运算,正确的是()A.2x+3y=5xyB.(x﹣3)2=x2﹣9C.(xy2)2=x2y4D.x6÷x3=x2【分析】直接利用合并同类项法则以及完全平方公式和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、2x+3y,无法计算,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、(xy2)2=x2y4,正确;D、x6÷x3=x3,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.(3分)下列图形,可以看作中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.4.(3分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+8【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.【点评】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.5.(3分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【解答】解:∵点(m,n)在函数y=的图象上,∴mn=6.列表如下:m﹣1﹣1﹣1222333﹣6﹣6﹣6n23﹣6﹣13﹣6﹣12﹣6﹣123mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18mn的值为6的概率是=.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.6.(3分)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,∴点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,∴A′的坐标为(﹣1,1).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为()A.4B.2C.6D.2【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵△ADE绕点A顺时针旋转90°到△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于20,∴AD=DC=2,∵DE=2,∴Rt△ADE中,AE==2故选:D.【点评】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.8.(3分)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π【分析】根据S阴=S△ABD﹣S扇形BAE计算即可.【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.9.(3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2【分析】根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的值,本题得以解决.【解答】解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.【点评】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.11.(3分)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1D.a﹣1【分析】根据题意和数轴可以用含a的式子表示出点B表示的数,本题得以解决.【解答】解:∵O为原点,AC=1,OA=OB,点C所表示的数为a,∴点A表示的数为a﹣1,∴点B表示的数为:﹣(a﹣1),故选:B.【点评】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.12.(3分)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.【分析】由S△ABC=16、S△A′EF=9且AD为BC边的中线知S△A′DE=S△A′EF=,S△ABD=S△ABC=8,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.二、填空题:本大题共6小题,满分24分。只填写最后结果,每小题填对得4分。13.(4分)若m﹣=3,则m2+=11.【分析】根据完全平方公式,把已知式子变形,然后整体代入求值计算即可得出答案.【解答】解:∵=m2﹣2+=9,∴m2+=11,故答案为11.【点评】本题主要考查了完全平方公式的运用,把已知式子变形,然后整体代入求值计算,难度适中.14.(4分)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是a>且a≠0.【分析】由方程有两个不相等的实数根,则运用一元二次方程ax2+bx+c=0(a≠0)的根的判别式是b2﹣4ac>0即可进行解答【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b2﹣4ac=4+4×3a>0,解得a>则a>且a≠0故答案为a>且a≠0【点评】本题重点考查了一元二次方程根的判别式,在一元二次方程ax2+bx+c=0(a≠0)中,(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.15.(4分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为9.5m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m,故答案为:9.5【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(4分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).17.(4分)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.18.(4分)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.【分析】根据题意找出规律,根据二次根式的性质计算即可.【解答】解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.【点评】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤。19.(8分)先化简,再求值:÷(+1),其中x为整数且满足不等式

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功