12017年黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bcD.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4B.2<x≤4C.2≤x≤4D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3B.3:2C.4:5D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.28.(3分)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米10.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值是.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)一个多边形的内角和等于900°,则这个多边形是边形.14.(3分)因式分解:x2﹣9=.15.(3分)计算:(+)•=.16.(3分)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为cm2(用含π的式子表示)17.(3分)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为.318.(3分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.19.(3分)已知反比例函数y=,当x>3时,y的取值范围是.20.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.21.(3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.三、解答题(本题共8小题,共57分)22.(5分)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)23.(6分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.424.(6分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.25.(6分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(7分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.27.(8分)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;5(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).28.(9分)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.29.(10分)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).(1)求抛物线的解析式;(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.672017年黑龙江省绥化市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选:C.【点评】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.82.(3分)(2017•绥化)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:数据“700000”用科学记数法可表示为7×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•绥化)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bcD.a5﹣a2=a3【分析】分别对每一个选项进行合并同类项,即可解题.【解答】解:A、3a+2a=5a,A选项错误;B、3a+3b=3(a+b),B选项错误;C、2a2bc﹣a2bc=a2bc,C选项正确;D、a5﹣a2=a2(a3﹣1),D选项错误;故选C.【点评】本题考查了合并同类项,合并同类项就是利用乘法分配律,熟练运用是解题的关键.4.(3分)(2017•绥化)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行,即可得出答案.【解答】解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或9特殊的平行四边形或线段.故正方形纸板ABCD的正投影不可能是梯形,故选:D.【点评】此题主要考查了平行投影的性质,利用太阳光线是平行的,那么对边平行的图形得到的投影依旧平行是解题关键.5.(3分)(2017•绥化)不等式组的解集是()A.x≤4B.2<x≤4C.2≤x≤4D.x>2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1≤3,得:x≤4,解不等式x+1>3,得:x>2,∴不等式组的解集为2<x≤4,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)(2017•绥化)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3B.3:2C.4:5D.4:9【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,10∴△A'B'C'与△ABC的相似比为2:3,∴=故选:A.【点评】本题考查的是位似变换的概念和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7.(3分)(2017•绥化)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.【分析】让红桃的张数除以扑克牌的总张数即为所求的概率.【解答】解:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2017•绥化)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质确定两条直线所经过的象限可得结果.【解答】解:直线y=4x+1过一、二、三象限;当b>0时,直线y=﹣x+b过一、二、四象限,两直线交点可能在一或二象限;当b<0时,直线y=﹣x+b过二、三、四象限,两直线交点可能在二或三象限;综上所述,直线y=4x+1与直线y=﹣x+b的交点不可能在第四象限,故选D.11【点评】本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.9.(3分)(2017•绥化)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米【分析】由sin∠ACB=得AB=BCsin∠ACB=3.5sin29°.【解