滚动小专题(一)数与式的计算求值题类型1实数的运算1.(2017·连云港)计算:-(-1)-38+(π-3.14)0.解:原式=1-2+1=0.2.(2017·邵阳)计算:4sin60°-(12)-1-12.解:原式=4×32-2-23=23-2-23=-2.3.(2017·益阳)计算:||-4-2cos60°+(3-2)0-(-3)2.解:原式=4-2×12+1-9=-5.4.(2017·宿迁)计算:||-3+(-1)4-2tan45°-(π-1)0.解:原式=3+1-2-1=1.5.(2017·郴州)计算:2sin30°+(π-3.14)0+|1-2|+(-1)2017.解:原式=1+1+(2-1)-1=2.6.(2017·菏泽)计算:-12-||3-10+25sin45°-(2017-1)2.解:原式=-1-(10-3)+25×22-(2017-22017+1)=-1-10+3+10-2017+22017-1=-2016+22017.类型2整式的运算7.(2017·重庆A卷)计算:x(x-2y)-(x+y)2.解:原式=-4xy-y2.8.(2017·宁波)先化简,再求值:(2+x)(2-x)+(x-1)(x+5),其中x=32.解:原式=4-x2+x2+4x-5=4x-1.当x=32时,原式=4×32-1=5.9.(2016·邵阳)先化简,再求值:(m-n)2-m(m-2n),其中m=3,n=2.解:原式=m2-2mn+n2-m2+2mn=n2.当n=2时,原式=2.类型3分式的运算10.(2017·青岛)化简:(a2b-a)÷a2-b2b.解:原式=a(a-b)b·b(a-b)(a+b)=aa+b.11.(2017·台州)先化简,再求值:(1-1x+1)·2x,其中x=2017.解:原式=x+1-1x+1·2x=2x+1.当x=2017时,原式=22017+1=22018=11009.12.(2017·日照)先化简,再求值:1a+1-a+1a2-2a+1÷a+1a-1,其中a=2.解:原式=1a+1-(a+1)(a-1)2·a-1a+1=1a+1-1a-1=a-1-(a+1)a2-1=-2a2-1.当a=2时,原式=-22-1=-2.13.(2017·烟台)先化简,再求值:(x-2xy-y2x)÷x2-y2x2+xy,其中x=2,y=2-1.解:原式=x2-2xy+y2x·x(x+y)(x+y)(x-y)=(x-y)2x·x(x+y)(x+y)(x-y)=x-y.当x=2,y=2-1时,原式=2-(2-1)=1.14.已知|a+1|+(b-3)2=0,求代数式(1b-1a)÷a2-2ab+b22ab的值.解:∵|a+1|+(b-3)2=0,∴a+1=0,b-3=0,即a=-1,b=3.则原式=a-bab÷(a-b)22ab=a-bab·2ab(a-b)2=2a-b=2-1-3=-12.15.(2017·百色)已知a=b+2018,求代数式2a-b·a2-b2a2+2ab+b2÷1a2-b2的值.解:原式=2a-b·(a+b)(a-b)(a+b)2·(a+b)(a-b)=2(a-b).∵a=b+2018,∴a-b=2018.∴原式=2×2018=4036.16.(2017·黄石)先化简,再求值:(2a-1-2a+1a2-1)÷1a-1,其中a=2sin60°-tan45°.解:原式=2(a+1)-2a-1(a+1)(a-1)·(a-1)=1a+1.当a=2sin60°-tan45°=2×32-1=3-1时,原式=13-1+1=33.17.(2017·威海)先化简:x2-2x+1x2-1÷(x-1x+1-x+1),然后从-5x5的范围内选取一个合适的整数作为x的值代入求值.解:原式=x2-2x+1x2-1÷[x-1x+1-(x-1)]=(x-1)2(x-1)(x+1)÷x-1-(x-1)(x+1)x+1=x-1x+1÷x-1-(x2-1)x+1=x-1x+1÷x-x2x+1=x-1x+1·x+1x(1-x)=-1x.∵满足-5x5的整数有-2,-1,0,1,2.又∵x=±1或x=0时,分母值为0,∴x只能取-2或2.当x=-2时,原式=12;当x=2时,原式=-12.