液压动力元件与执行元件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

《液压与气动控制技术》液压动力元件与执行元件浙江机电职业技术学院知识与能力目标12了解柱塞式、齿轮式、叶片式液压泵的工作原理3掌握液压泵和液压马达的工作原理与性能参数42了解高速液压马达及低速大扭矩马达掌握液压缸的类型与分类3液压动力元件与执行元件通过学习,要求掌握泵、马达与缸的工作原理(泵是如何吸油、压油和配流的,马达怎样产生转速、转矩)、结构特点、及主要性能特点;了解不同类型的泵马达之间的性能差异及适用范围,为日后正确选用奠定基础。4液压泵液压马达液压泵、液压马达实物图和符号泵Tω泵的输入参量转矩T角速度ωpQ输出参量流量Q压力p马达pQ马达的输入参量流量Q压力pTω输出参量转矩T角速度ω5功用液压泵:将电动机或其它原动机输入的机械能转换为液体的压力能,向系统供油。(柱塞泵、齿轮泵、叶片泵等)液压马达:将泵输入的液压能转换为机械能而对负载做功。功用上—相反结构上—相似原理上—互逆6液压泵、马达概述a容积式泵、马达的工作原理QBACO泵吸入泵排出7561234图2.1液压泵的工作原理由此可见,泵是靠密封工作腔的容积变化进行工作的。柱塞向左移动时,工作腔容积变小,已吸入的油液便通过压油阀6排到系统中去。凸轮1旋转时,当柱塞向右移动,工作腔容积变大,产生真空,油液便通过吸油阀5吸入;8液压泵和液压马达工作的必需条件:(1)必须有一个大小能作周期性变化的封闭容积;(2)必须有配流动作,即封闭容积加大时吸入低压油封闭容积减小时排出高压油封闭容积加大时充入高压油封闭容积减小时排出低压油(3)高低压油不得连通。液压泵液压马达9液压泵和液压马达都是液压传动系统中的能量转换元件。液压泵由原动机驱动,把输入的机械能转换成为油液的压力能,再以压力、流量的形式输入到系统中去,它是液压系统的动力源。液压马达则将输入的压力能转换成机械能,以扭矩和转速的形式输送到执行机构做功,是液压传动系统的执行元件。Q液压输出pQJ液压马达液压泵机械输入ppTpQ液压输入mmT机械输出10Q液压输出pQJ液压马达液压泵机械输入ppTpQ液压输入mmT机械输出液压马达是实现连续旋转运动的执行元件,从原理上讲,向容积式泵中输入压力油,迫使其转轴转动,就成为液压马达,即容积式泵都可作液压马达使用。但在实际中由于性能及结构对称性等要求不同,一般情况下,液压泵和液压马达不能互换。11根据工作腔的容积变化而进行吸油和排油是液压泵的共同特点,因而这种泵又称为容积泵。液压泵按其在单位时间内所能输出油液体积能否调节而分为定量泵和变量泵两类;按结构形式可以分为齿轮式、叶片式和柱塞式三大类。液压马达也具有相同的形式。从工作过程可以看出,在不考虑漏油的情况下,液压泵在每一工作周期中吸入或排出的油液体积只取决于工作构件的几何尺寸,如柱塞泵的柱塞直径和工作行程。12液压泵、马达的基本性能参数液压泵的基本性能参数主要是指液压泵的压力、排量、流量、功率和效率等。工作压力:指泵(马达)实际工作时的压力。泵指输出压力;马达指输入压力。实际工作压力取决于相应的外负载。额定压力:泵(马达)在额定工况条件下按试验标准规定的连续运转的最高压力,超过此值就是过载。每弧度排量:泵(马达)每转一弧度所排出(吸入)液体的体积,也称角排量。dV每转排量:无内外泄漏时,泵(马达)每转一周所排出(吸入)液体的体积。V13nTTpqNtttt2理论流量:无内外泄漏时,单位时间内泵(马达)排出(吸入)液体的体积。泵、马达的流量为其转速与排量的乘积,即。tqnVVqdt额定流量:在额定转速和额定压力下泵输出(马达输入)的流量,也是按试验标准规定必须保证的流量。由于泵和马达存在内泄漏,油液具有压缩性,所以额定流量和理论流量是不同的。q功率和效率:液压泵由原动机驱动,输入量是转矩和角速度,输出量是液体的压力和流量;如果不考虑液压泵、马达在能量转换过程中的损失,则输出功率等于输入功率,也就是它们的理论功率是:Tqp14齿轮泵齿轮泵是一种常用的液压泵,它的主要优点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调。齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机械、工程机械和农林机械等各个行业。齿轮泵按照其啮合形式的不同,有外啮合和内啮合两种,外啮合齿轮泵应用较广,内啮合齿轮泵则多为辅助泵。15外啮合齿轮泵的结构及工作原理外啮合16外啮合齿轮泵的结构及工作原理泵主要由主、从动齿轮,驱动轴,泵体及侧板等主要零件构成。图2.2外啮合齿轮泵的结构原理1—泵体;2—主动齿轮;3—从动齿轮泵体内相互啮合的主、从动齿轮与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将左、右两腔隔开,形成了吸、压油腔。17齿轮泵的结构特点18内啮合齿轮泵内啮合齿轮泵有渐开线齿形和摆线齿形两种,其结构示意图见下图。内啮合齿轮泵1—吸油腔,2—压油腔,3—隔板内啮合19在渐开线齿形内啮合齿轮泵中,小齿轮和内齿轮之间要装一块月牙隔板,以便把吸油腔和压油腔隔开,如图(a)。内啮合齿轮泵中的小齿轮是主动轮,大齿轮为从动轮,在工作时大齿轮随小齿轮同向旋转。内啮合齿轮泵1—吸油腔,2—压油腔,3—隔板主动小齿轮压油窗口吸油窗口月牙板从动内齿轮20内啮合齿轮泵1—吸油腔,2—压油腔,3—隔板主动小齿轮压油窗口吸油窗口从动内齿轮摆线齿形啮合齿轮泵又称摆线转子泵。在这种泵中,小齿轮和内齿轮只相差一齿,因而不需设置隔板。如图(b)。21•内啮合齿轮泵的结构紧凑,尺寸小,重量轻,运转平稳,噪声低;•但在低速、高压下工作时,压力脉动大,容积效率低;•一般用于中、低压系统,或作为补油泵。•内啮合齿轮泵的缺点是齿形复杂,加工困难,价格较贵,且不适合高压工况。22叶片泵单作用叶片泵双作用叶片泵23单作用叶片泵工作原理右图为单作用叶片泵的工作原理。泵由转2、定子3、叶片4和配流盘等件组成。单作用叶片泵工作原理1—压油口;2—转子;3—定子;4—叶片;5—吸油口压油窗口定子吸油窗口压油口吸油口2451243e定子的内表面是圆柱面,转子和定子中心之间存在着偏心,叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及叶片根部油压力作用下,叶片顶部贴紧在定子内表面上,于是两相邻叶片、配油盘、定子和转子便形成了一个密封的工作腔。•泵在转子转一转的过程中,吸油、压油各一次,故称单作用叶片泵。•转子单方向受力,轴承负载大。•改变偏心距,可改变泵排量,形成变量叶片泵。252双作用叶片泵工作原理双作用叶片泵的原理和单作用叶片泵相似,不同之处只在于定子内表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线组成,且定子和转子是同心的。双作用叶片泵2627工作原理图中,当转子顺时针方向旋转时,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区将吸、压油区隔开。双作用叶片泵工作原理1—定子;2—压油口;3—转子;4—叶片;5—吸油口28工作原理这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。双作用叶片泵工作原理1—定子;2—压油口;3—转子;4—叶片;5—吸油口29柱塞泵柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容积的变化来实现吸油和排油的。柱塞泵的特点是泄漏小、容积效率高,可以在高压下工作。轴向柱塞泵可分为斜盘式和斜轴式两大类。轴向柱塞泵30斜盘1和配油盘4不动,传动轴5带动缸体3、柱塞2一起转动。传动轴旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐渐向缸体外伸出,使缸体孔内密封工作腔容积不断增加,油液经配油盘4上的配油窗口a吸入。斜盘1柱塞2缸体3配油盘4(1)斜盘式轴向柱塞泵吸油口压油口31斜盘1柱塞2缸体3配油盘4柱塞在其自上而下回转的半周内又逐渐向里推入,使密封工作腔容积不断减小,将油液从配油盘窗口b向外排出。缸体每转一转,每个柱塞往复运动一次,完成一次吸油动作。改变斜盘的倾角,就可以改变密封工作容积的有效变化量,实现泵的变量。32柱塞泵可以是单向或双向变量泵。为了流量脉动率尽可能小,通常采用奇数柱塞数。33液压马达和液压泵在结构上基本相同,也是靠密封容积的变化进行工作的。常见的液压马达也有齿轮式、叶片式和柱塞式等几种主要形式;从转速转矩范围分,可有高速马达和低速大扭矩马达之分。马达和泵在工作原理上是互逆的,当向泵输入压力油时,其轴输出转速和转矩就成为马达。由于二者的任务和要求有所不同,故在实际结构上只有少数泵能做马达使用。液压马达34高速液压马达一般来说,额定转速高于500r/min的马达属于高速马达,额定转速低于500r/min的马达属于低速马达。高速液压马达基本型式:齿轮式、叶片式和轴向柱塞式等。它们的主要特点是转速高,转动惯量小,便于启动、制动、调速和换向。通常高速马达的输出转矩不大,最低稳定转速较高,只能满足高速小扭矩工况。35低速液压马达低速液压马达是相对于高速马达而言的,通常这类马达在结构形式上多为径向柱塞式,其特点是:最低转速低,大约在5~10转/分;输出扭矩大,可达几万牛顿米;径向尺寸大,转动惯量大。它可以直接与工作机构直接联接,不需要减速装置,使传动结构大为简化。低速大扭矩液压马达广泛用于起重、运输、建筑、矿山和船舶等机械上。低速大扭矩液压马达的基本形式有三种:它们分别是曲柄连杆马达、静力平衡马达和多作用内曲线马达。36液压泵的工作特点液压泵的吸油腔压力过低将会产生吸油不足、异常噪声,甚至无法工作。液压泵的工作压力取决于外负载,为了防止压力过高,泵的出口常常要采取限压措施。变量泵可以通过调节排量来改变流量,定量泵只有用改变转速的办法来调节流量。液压泵的流量脉动。液压泵“困油现象”。液压泵及液压马达的工作特点37液压马达的工作特点马达应能正、反运转,因此,就要求液压马达在设计时具有结构上的对称性。当液压马达的惯性负载大、转速高,并要求急速制动或反转时,会产生较高的液压冲击,应在系统中设置必要的安全阀或缓冲阀。由于内部泄漏不可避免,因此将马达的排油口关闭而进行制动时,仍会有缓惯的滑转,所以,需要长时间精确制动时,应另行设置防止滑转的制动器。某些型式的液压马达必须在回油口具有足够的背压才能保证正常工作。小结液压泵是液压系统的动力源。构成液压泵基本条件是:具有可变的密封容积,协调的配油机构,及高、低压腔相互隔离的结构。液压泵和液压马达的主要性能参数有:排量、流量、压力、功率和效率。排量为几何参数,而流量则为排量和转速的乘积。实际工作压力取决于外负载。液压功率为泵的输出流量和工作压力之乘积。容积效率和机械效率分别反映了液压泵和马达的容积损失和机械损失。391液压缸的类型及特点液压缸的分类按供油方向分:单作用缸和双作用缸。按结构形式分:活塞缸、柱塞缸、伸缩套筒缸、摆动液压缸。按活塞杆形式分:单活塞杆缸、双活塞杆缸。AFQPv单杆液压缸AFQPv双杆液压缸AFQPv柱塞式液压缸液压缸40(1)活塞式液压缸活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又有缸筒固定和活塞杆固定两种方式。1.1双杆活塞液压缸双活塞杆液压缸的活塞两端都带有活塞杆,分为缸体固定和活塞杆固定两种安装形式,如图3.1所示。AFqv(a)缸筒固定式1P2PAFqv(b)活塞杆固定式1P2P411.2单活塞杆液压缸单活塞杆液压缸的活塞仅一端带有活塞杆,活塞双向运动可以获得不同的速度和输出力,其简图及油路连接方式如下图所示。2A1F1v(a)无杆腔进油1P2P1ADdq2A2F(b)有杆腔进油1P2P1A2vq42(2)柱塞式液压缸柱塞式液压缸当活塞式液压缸行程较长时,加工难度大,使得制造成本增加。某些场合所用的液压缸并不要求双向控制,柱塞式液压缸正是满足了这种使用要求的一种价格低廉的液压缸。柱塞pq缸筒A(a)43柱塞pq缸筒A(a)柱塞式液压缸如下图所示,柱塞缸由缸筒、柱塞、导套、密封圈和压盖等零件组成,柱塞和缸筒内壁不接触,因此缸筒内孔

1 / 57
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功