第1讲函数与方程思想1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2.和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化,对函数y=f(x),当y0时,就化为不等式f(x)0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.热点一函数与方程思想在不等式中的应用例1(1)f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0成立,则a=________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0时,f′(x)g(x)+f(x)g′(x)0,且g(-3)=0,则不等式f(x)g(x)0的解集是__________.答案(1)4(2)(-∞,-3)∪(0,3)解析(1)若x=0,则不论a取何值,f(x)≥0显然成立;当x0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为a≥3x2-1x3.设g(x)=3x2-1x3,则g′(x)=31-2xx4,所以g(x)在区间0,12上单调递增,在区间12,1上单调递减,因此g(x)max=g12=4,从而a≥4;当x0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为a≤3x2-1x3,设g(x)=3x2-1x3,且g(x)在区间[-1,0)上单调递增,因此g(x)min=g(-1)=4,从而a≤4,综上a=4.(2)设F(x)=f(x)g(x),由于f(x),g(x)分别是定义在R上的奇函数和偶函数,得F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),即F(x)在R上为奇函数.又当x0时,F′(x)=f′(x)g(x)+f(x)g′(x)0,所以x0时,F(x)为增函数.因为奇函数在对称区间上的单调性相同,所以x0时,F(x)也是增函数.因为F(-3)=f(-3)g(-3)=0=-F(3).所以,由图可知F(x)0的解集是(-∞,-3)∪(0,3).思维升华(1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f(x)0或f(x)0恒成立,一般可转化为f(x)min0或f(x)max0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.(1)若2x+5y≤2-y+5-x,则有()A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0(2)已知函数f(x)=12x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数m的取值范围是()A.m≥32B.m32C.m≤32D.m32答案(1)B(2)A解析(1)把不等式变形为2x-5-x≤2-y-5y,构造函数y=2x-5-x,其为R上的增函数,所以有x≤-y.(2)因为函数f(x)=12x4-2x3+3m.所以f′(x)=2x3-6x2,令f′(x)=0得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-272,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-272≥-9,解得m≥32,故选A.热点二函数与方程思想在数列中的应用例2已知数列{an}是各项均为正数的等差数列.(1)若a1=2,且a2,a3,a4+1成等比数列,求数列{an}的通项公式an;(2)在(1)的条件下,数列{an}的前n项和为Sn,设bn=1Sn+1+1Sn+2+…+1S2n,若对任意的n∈N*,不等式bn≤k恒成立,求实数k的最小值.解(1)因为a1=2,a23=a2·(a4+1),又因为{an}是正项等差数列,故d≥0,所以(2+2d)2=(2+d)(3+3d),得d=2或d=-1(舍去),所以数列{an}的通项公式an=2n.(2)因为Sn=n(n+1),bn=1Sn+1+1Sn+2+…+1S2n=1n+1n+2+1n+2n+3+…+12n2n+1=1n+1-1n+2+1n+2-1n+3+…+12n-12n+1=1n+1-12n+1=n2n2+3n+1=12n+1n+3,令f(x)=2x+1x(x≥1),则f′(x)=2-1x2,当x≥1时,f′(x)0恒成立,所以f(x)在[1,+∞)上是增函数,故当x=1时,[f(x)]min=f(1)=3,即当n=1时,(bn)max=16,要使对任意的正整数n,不等式bn≤k恒成立,则须使k≥(bn)max=16,所以实数k的最小值为16.思维升华(1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.(1)(2014·江苏)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是________.(2)已知函数f(x)=(13)x,等比数列{an}的前n项和为f(n)-c,则an的最小值为()A.-1B.1C.23D.-23答案(1)4(2)D解析(1)因为a8=a2q6,a6=a2q4,a4=a2q2,所以由a8=a6+2a4得a2q6=a2q4+2a2q2,消去a2q2,得到关于q2的一元二次方程(q2)2-q2-2=0,解得q2=2,a6=a2q4=1×22=4.(2)由题设,得a1=f(1)-c=13-c;a2=[f(2)-c]-[f(1)-c]=-29;a3=[f(3)-c]-[f(2)-c]=-227.又数列{an}是等比数列,∴(-29)2=(13-c)×(-227),∴c=1.又∵公比q=a3a2=13,∴an=-23(13)n-1=-2(13)n,n∈N*.且数列{an}是递增数列,∴n=1时,an有最小值a1=-23.热点三函数与方程思想在几何中的应用例3已知椭圆C:x2a2+y2b2=1(ab0)的一个顶点为A(2,0),离心率为22.直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.解(1)由题意得a=2,ca=22,a2=b2+c2,解得b=2.所以椭圆C的方程为x24+y22=1.(2)由y=kx-1,x24+y22=1得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=4k21+2k2,x1x2=2k2-41+2k2.所以|MN|=x2-x12+y2-y12=1+k2[x1+x22-4x1x2]=21+k24+6k21+2k2.又因为点A(2,0)到直线y=k(x-1)的距离d=|k|1+k2,所以△AMN的面积为S=12|MN|·d=|k|4+6k21+2k2.由|k|4+6k21+2k2=103,解得k=±1.所以,k的值为1或-1.思维升华几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.(1)(2014·安徽)设F1,F2分别是椭圆E:x2+y2b2=1(0b1)的左,右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为__________.(2)若a1,则双曲线x2a2-y2a+12=1的离心率e的取值范围是()A.(1,2)B.(2,5)C.[2,5]D.(3,5)答案(1)x2+32y2=1(2)B解析(1)设点B的坐标为(x0,y0),∵x2+y2b2=1,且0b1,∴F1(-1-b2,0),F2(1-b2,0).∵AF2⊥x轴,∴A(1-b2,b2).∵|AF1|=3|F1B|,∴AF1→=3F1B→,∴(-21-b2,-b2)=3(x0+1-b2,y0).∴x0=-531-b2,y0=-b23.∴点B的坐标为-531-b2,-b23.将点B-531-b2,-b23代入x2+y2b2=1,得b2=23.∴椭圆E的方程为x2+32y2=1.(2)e2=(ca)2=a2+a+12a2=1+(1+1a)2,因为当a1时,01a1,所以2e25,即2e5.1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.真题感悟1.(2014·辽宁)已知a=2-13,b=log213,c=121log3,则()A.abcB.acbC.cabD.cba答案C解析0a=13220=1,b=log213log21=0,c=121log3121log2=1,即0a1,b0,c1,所以cab.2.(2014·福建)设P,Q分别为圆x2+(y-6)2=2和椭圆x210+y2=1上的点,则P,Q两点间的最大距离是()A.52B.46+2C.7+2D.62答案D解析如图所示,设以(0,6)为圆心,以r为半径的圆的方程为x2+(y-6)2=r2(r0),与椭圆方程x210+y2=1联立得方程组,消掉x2得9y2+12y+r2-46=0.令Δ=122-4×9(r2-46)=0,解得r2=50,即r=52.由题意易知P,Q两点间的最大距离为r+2=62,故选D.3.(2014·江苏)在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是______.答案-3解析y=ax2+bx的导数为y′=2ax-bx2,直线7x+2y+3=0的斜率为-72.由题意得4a+b2=-5,4a-b4=-72,解得a=-1,b=-2,则a+b=-3.4.(2014·福建)要制作一个容积为4m3,高为1m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元)答案160解析设该长方体容器的长为xm,则宽为4xm.