1RadianceEquation2OutlineIntroductionLightSimplifyingAssumptionsRadianceReflectanceTheRadianceEquationTraditionalRenderingSolutionsVisibilityConclusions3OverviewPolygonsPlanesCreatinganobjectfrompolygons4NoMoreSpheresMostthingsincomputergraphicsarenotdescribedwithspheres!PolygonalmeshesarethemostcommonrepresentationLookathowpolygonscanbedescribedandhowtheycanusedinray-casting5PolygonalMeshes6PolygonsApolygon(face)QisdefinedbyaseriesofpointsThepointsaremustbeco-planar3pointsdefineaplane,buta4thpointneednotlieonthatplane[]()iiiinnzyxpppppp,,,1,...,2,1,0=−7Convex,ConcaveConvexConcaveCGpeopledislikeconcavepolygonsCGpeoplewouldprefertriangles!!Easytobreakconvexobjectintotriangles,hardforconcave8COP9WhyTriangles?Ingeneralforanobjectrepresentation(bezier,CSG)isitfarfromeasytofindthe2Dprojectionoftheshape10DifferentialSolidAngledωdω=dxdy={rdθ}{rsin(θdφ}=(r2)sin(θdθdφSphericalCoordinateSystem11IntroductionLightingisthecentralproblemofreal-timegraphicsrenderingArbitraryshapedlightsChangesinlightingconditionsReal-timeshadowsReal-timereflectionsMixturesofmanydifferenttypesofsurface12IntroductionReal-timewalkthroughwithglobalilluminationPossibleunderlimitedconditionsRadiosity(diffusesurfacesonly)Real-timeinteractionNotpossibleexceptforspecialcaselocalilluminationWhyistheproblemsohard?13LightVisiblelightiselectromagneticradiationwithwavelengthsapproximatelyintherangefrom400nmto700nm400nm700nm14Light:PhotonsLightcanbeviewedaswaveorparticlephenomenonParticlesarephotonspacketsofenergywhichtravelinastraightlineinvaccuumwithvelocityc(300,000km.p.s.)Theproblemofhowlightinteractswithsurfacesinavolumeofspaceisanexampleofatransportproblem.15Light:RadiantPowerΦdenotestheradiantenergyorfluxinavolumeV.Thefluxistherateofenergyflowingthroughasurfaceperunittime(watts).Theenergyisproportionaltotheparticleflow,sinceeachphotoncarriesenergy.Thefluxmaybethoughtofastheflowofphotonsperunittime.16Light:FluxEquilibriumTotalfluxinavolumeindynamicequilibriumParticlesareflowingDistributionisconstantConservationofenergyTotalenergyinputintothevolume=totalenergythatisoutputbyorabsorbedbymatterwithinthevolume.17Light:FundamentalEquationInputEmission–emittedfromwithinvolumeInscattering–flowsfromoutsideOutputStreaming–withoutinteractionwithmatterinthevolumeOutscattering–reflectedoutfrommatterAbsorption–bymatterwithinthevolumeInput=Output18Light:EquationΦ(p,ω)denotesfluxatp∈V,indirectionωItispossibletowritedownanintegralequationforΦ(p,ω)basedon:Emission+Inscattering=Streaming+Outscattering+AbsorptionCompleteknowledgeofΦ(p,ω)providesacompletesolutiontothegraphicsrenderingproblem.RenderingisaboutsolvingforΦ(p,ω).19SimplifyingAssumptionsWavelengthindependenceNointeractionbetweenwavelengths(nofluorescence)TimeinvarianceSolutionremainsvalidovertimeunlessscenechanges(nophosphorescence)Lighttransportsinavacuum(non-participatingmedium)–‘freespace’–interactiononlyoccursatthesurfacesofobjects20RadianceRadiance(L)isthefluxthatleavesasurface,perunitprojectedareaofthesurface,perunitsolidangleofdirection.θndALdΦ=LdAcosθdω21RadianceForcomputergraphicsthebasicparticleisnotthephotonandtheenergyitcarriesbuttherayanditsassociatedradiance.θndALdωRadianceisconstantalongaray.22Radiance:Radiosity,IrradianceRadiosity-isthefluxperunitareathatradiatesfromasurface,denotedbyB.dΦ=BdAIrradianceisthefluxperunitareathatarrivesatasurface,denotedbyE.dΦ=EdA23RadiosityandIrradianceL(p,ω)isradianceatpindirectionωE(p,ω)isirradianceatpindirectionωE(p,ω)=(dΦ/dA)=L(p,ω)cosθdω24ReflectanceBRDFBi-directionalReflectanceDistributionFunctionRelatesReflectedradiancetoincomingirradianceωiωrIncidentrayReflectedrayIlluminationhemispheref(p,ωi,ωr)25Reflectance:BRDFReflectedRadiance=BRDF×IrradianceL(p,ωr)=f(p,ωi,ωr)E(p,ωi)=f(p,ωi,ωr)L(p,ωi)cosθidωiInpracticeBRDF’shardtospecifyRelyonidealtypesPerfectlydiffusereflectionPerfectlyspecularreflectionGlossyreflectionBRDFstakenasadditivemixtureofthese26TheRadianceEquationRadianceL(p,ω)atapointpindirectionωisthesumofEmittedradianceLe(p,ω)TotalreflectedradianceRadiance=EmittedRadiance+TotalReflectedRadiance27TheRadianceEquation:ReflectionTotalreflectedradianceindirectionω:∫f(p,ωi,ω)L(p,ωi)cosθidωiRadianceEquation:L(p,ω)=Le(p,ω)+∫f(p,ωi,ω)L(p,ωi)cosθidωi(Integrationovertheilluminationhemisphere)28TheRadianceEquation∫∫+=ππφθθθωωωωω2020sincos),(),,(),(),(ddpLpfpLpLiiiie29TheRadianceEquationpisconsideredtobeonasurface,butcanbeanywhere,sinceradianceisconstantalongaray,tracebackuntilsurfaceisreachedatp’,thenL(p,ωi)=L(p’,ωi)p*ωipL(p,ω)L(p,ω)dependsonallL(p*,ωi)whichinturnarerecursivelydefined.Theradianceequationmodelsglobalillumination.30TraditionalSolutionstotheRadianceEquationTheradianceequationembodiestotalityofall2Dprojections(view).Extractionofa2Dprojectiontoformanimageiscalledrendering.31TraditionalSolutionsLocalIlluminationGlobalIlluminationViewDependent‘Realtime’graphics:OpenGLRaytracingPathtracingViewIndependentFlatshadedgraphics(IBR)Radiosity(PhotonTracing