2013年北京市高级中等学校招生考试数学试卷一.选择题(本题共32分,每小题4分)1.在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了共计约3960亿元的投资计划,将3960用科学计数法表示应为()A.239.610B.33.9610C.43.9610D.40.396102.34的倒数是()A.43B.34C.34D.433.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.15B.25C.35D.454.如图,直线a,b被直线c所截,a∥b,12,若340,则4等于()A.40B.50C.70D.805.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B、C、D,使得ABBC,CDBC,点E在BC上.若测得20BEm,10CEm,20CDm,则河的宽度AB等于()A.60mB.40mC.30mD.20m6.下列图形中,是中心对称图形但不是轴对称图形的是()第4题图第5题图7.某中学随机的调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时8.如图,点P是以O为圆心,AB为直径的半圆上的动点,2AB,设弦AP的长为x,APO的面积为y,则下列图像中,能表示y与x的函数关系的图像大致是()二、填空题(本题共16分,每小题4分)9.因式分解:244ababa6____________.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y.11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若5AB,12AD,则四边形ABOM的周长为.12.如图,在平面直角坐标系xOy中,已知直线:l1yx,双曲线1yx,在l上取一点1A,过1A作x轴的垂线交双曲线于点1B,过1B作y轴的垂线交l于点2A,请继续操作并探究:过2A作x轴的垂线交双曲线于点2B,过2B作y轴的垂线交l于点3A,,这样依次得到l上的点1A,2A,3A,,nA,.记点nA的横坐标为na,若12a,则2a,2013a;若要将上述操作无限次的进行下去,则1a不能取的值是.三、解答题(本题共30分,每小题5分)13.已知:如图,D是AC上一点,ABDA,DE∥AB,BDAE.求证:BCAE.14.计算:101(13)22cos454.15.解不等式组:32,12.3xxxx16.已知2410xx,求代数式22(23)()()xxyxyy的值.17.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.18.已知关于x的一元二次方程22240xxk有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.四、解答题(本题共20分,每小题5分)19.如图,在ABCD中,F是AD的中点,延长BC到点E,使12CEBC,连接DE、CF.(1)求证:四边形CEDF是平行四边形;(2)若4AB,6AD,60B,求DE的长.20.如图,AB是O的直径,PA、PC与O分别相切于点A、C,PC交AB的延长线于点D,DEPO交PO的延长线于点E.(1)求证:EPDEDO;(2)若6PC,3tan4PDA,求OE的长.21.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八届园博会的水面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).22.阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(2)a的正方形ABCD各边上分别截取1AEBFCGDH,当45AFQBGMGHNDEP时,求正方形MNPQ的面积.小明发现,分别延长QE、MF、NG、PH交FA、GB、HC、ED的延长线于点R、S、T、W,可得RQF、SMG、TNH、WPE是四个全等的等腰直角三角形(如图2).请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图3,在等边ABC各边上分别截取ADBECF,再分别过点D、E、F作BC、AC、AB的垂线,得到等边RPQ,若33EPQS,则AD的长为.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线222ymxmx(0m)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A、B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在21x这一段位于直线l的上方,并且在23x这一段位于直线AB的下方,求该抛物线的解析式.24.在ABC中,ABAC,BAC(060),将线段BC绕点B逆时针旋转60得到线段BD.(1)如图1,直接写出ABD的大小(用含的式子表示);(2)如图2,150BCE,60ABE,判断ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若45DEC,求的值.BCDA图1BCDEA图225.对于平面直角坐标系xOy中的点P和C,给出如下定义:若C上存在两个点A,B,使得60APB,则称P为C的关联点.已知点11,22D,(0,2)E,(23,0)F.(1)当O的半径为1时:①在点D、E、F中,O的关联点是;②过点F作直线l交y轴正半轴于点G,使30GFO,若直线l上的点(,)Pmn是O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.