广东省深圳市17所名校联考2016年中考数学2月模拟试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1广东省深圳市17所名校联考2016年中考数学2月模拟试题一、选择题(本部分共12小题,每小题3分,共36分,每小题给出的四个选项,只有一项是正确的)1.方程x2=3x的根是()A.3B.﹣3或0C.3或0D.02.如图是一个几何体的俯视图,则该几何体可能是()A.B.C.D.3.若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣D.4.在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A.B.C.D.5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.1.5米B.2.3米C.3.2米D.7.8米7.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方2程为()A.100x(1﹣2x)=90B.100(1+2x)=90C.100(1﹣x)2=90D.100(1+x)2=908.关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小D.抛物线可由y=x2经过平移得到9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32C.64D.12810.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=()A.2B.4C.6D.311.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有()①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.A.1B.2C.3D.412.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()3A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.cos45°=.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.15.如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(﹣1,2),则点P的坐标为.16.如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是.三、解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题7分,第20小题8分,第21小题8分,第22小题9分,第23小题9分,共52分)17.计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.18.九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.419.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)20.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.21.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.522.东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:x(元)…35404550…y(件)…750700650600…若每天的销售量y(件)是销售单价x(元)的一次函数(1)求y与x的函数关系式;(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围.23.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.62016年广东省深圳市17所名校联考中考数学模拟试卷(2月份)参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分,每小题给出的四个选项,只有一项是正确的)1.方程x2=3x的根是()A.3B.﹣3或0C.3或0D.0【考点】解一元二次方程-因式分解法.【分析】先把方程化为一般式,再把方程左边因式分解得x(x﹣3)=0,方程就可转化为两个一元一次方程x=0或x﹣3=0,然后解一元一次方程即可.【解答】解:∵x2=3x,∴x2﹣3x=0,∴x(x﹣3)=0,∴x=0或x=3,故选C.【点评】本题考查了利用因式分解法解一元二次方程ax2+bx+c=0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.2.如图是一个几何体的俯视图,则该几何体可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【解答】解:图是两个圆,一大一小,小的包含在大圆里面.A、球的俯视图是一个圆,故选项错误;B、俯视图是两个圆,一大一小,小的包含在大圆里面,此选项正确;C、圆锥的俯视图是一个圆及这个圆的圆心,此选项错误;D、圆柱的俯视图是一个圆,故选项错误.故选:B.【点评】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.3.若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣D.【考点】反比例函数图象上点的坐标特征.7【分析】直接把点的坐标代入解析式即可.【解答】解:把点A代入解析式可知:m=﹣.故选C.【点评】主要考查了反比例函数图象上点的坐标特征.直接把点的坐标代入解析式即可求出点坐标中未知数的值.4.在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先根据勾股定理计算出斜边长,然后根据余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦可得答案.【解答】解:∵∠C=90°,a=4,b=3,∴c==5,∴cosA==,故选:A.【点评】此题主要考查了锐角三角函数与勾股定理,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:列表得:根据题意分析可得:共6种情况;为奇数的2种.故P(奇数)==.【点评】此题考查的是列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这8棵树的高度为()A.1.5米B.2.3米C.3.2米D.7.8米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:∵同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,∴=,∴=,∴BC=×5=3.2米.故选:C.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.7.某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90B.100(1+2x)=90C.100(1﹣x)2=90D.100(1+x)2=90【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设该商品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:100(1﹣x)2=90.故答案为:100(1﹣x)2=90.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.8.关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小9D.抛物线可由y=x2经过平移得到【考点】二次函数的性质.【分析】分别利用二次函数的性质判断开口方向,得出最值以及增减性,进而判断即可.【解答】解:A、∵a=﹣<0,∴抛物线开口方向向下,故此选项正确,不合题意;B、∵y=﹣(x﹣3)2﹣2的顶点坐标为:(3,﹣2),故当x=3时,函数有最大值﹣2,故此选项正确,不合题意;C、当x>3时,y随x的增大而减小,此选项正确,不合题意;D、抛物线可由y=﹣x2经过平移得到,故此选项错误,符合题意.故选:D.【点评】此题主要考查了二次函数的性质,正确掌握二次函数的性质是解题关键.9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32C.64D.128【考点】正方形的性质.【分析】正方形对角线长相等,因为正方形又是菱形,所以正方形的面积可以根据S=ab(a、b是正方形对角线长度)计算.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选B.【点评】本题考查了正方形面积计算可以按照菱形面积计算公式计算,考查了正方形对角线相等的性质,解本题的关键是清楚菱形的面积计算公式且根据其求解.10.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=()A.2B.4C.6D.3【考点】反比例函数系数k的几何意义.10【分析】由直角边AC的中点是D,S△AOC=3,于是得到S△CDO=S△AOC=,由于反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,即可得到结论.【解答】解:∵直角边AC的中点是D,S△AOC=3,∴S△CDO=S△AOC=,∵反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,∴k=2S△CDO=3,故选D.【点评】本题考查了反比

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功