黑龙江省哈尔滨市南岗区2016届中考数学一模试题(含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

黑龙江省哈尔滨市南岗区2016届中考数学一模试题一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.5B.﹣5C.D.﹣2.下列计算正确的是()A.2a+3a=6aB.a2•a3=a6C.a8÷a4=a2D.(﹣2a3)2=4a63.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A.B.C.4D.﹣45.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.6.如图,市政府准备修建一座高AB为6m的过街天桥,已知∠ACB为天桥的坡面AC与地面BC的夹角,且sin∠ACB=,则坡面AC的长度为()A.6mB.8mC.10mD.12m7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.58.如图,在△ABC中,D、F、E分别为边BC、AB、AC上的一点,连接BE、FD,它们相交于点G,连接DE,若四边形AFDE是平行四边形,则下列说法正确的是()A.B.C.D.9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°10.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30B.上午8:35C.上午8:40D.上午8:45二、填空题(共10小题,每小题3分,满分30分)11.将1300000用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算=.14.把多项式2x2﹣8分解因式得:.15.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为.16.不等式组的解集是.17.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是.18.某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为.19.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为.20.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.三、解答题(共7小题,满分60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.23.今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,为了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)本次成抽样调查共抽取了多少名九年级学生?(2)补全条形统计图;(3)若该中学九年级共有400名学生,请你估计该中学九年级去敬老院的学生有多少名?24.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.25.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?26.如图1,BC是⊙O的直径,点A在⊙O上,点D在CA的延长线上,DE⊥BC,垂足为点E,DE与⊙O相交于点H,与AB相交于点l,过点A作⊙O的切线AF,与DE相交于点F.(1)求证:∠DAF=∠ABO;(2)当AB=AD时,求证:BC=2AF;(3)如图2,在(2)的条件下,延长FA,BC相交于点G,若tan∠DAF=,EH=2,求线段CG的长.27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx﹣3与x轴相交于点A(﹣3,0)和点B,与y轴相交于点C.(1)求抛物线的解析式;(2)如图2,直线y=kx+3k经过点A,与y轴正半轴相交于点D,点P为第三象限内抛物线上一点,连接PD绕点P逆时针旋转,与线段AD相交于点E,且∠EPD=2∠PDC,若∠AEP+∠ADP=90°,求点D的坐标;(3)如图3,在(2)的条件下,过点E作EF⊥PD,垂足为点G,EF与y轴相交于点F,连接PF,若sin∠PFC=,求PF的长.2016年黑龙江省哈尔滨市南岗区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.5B.﹣5C.D.﹣【考点】倒数.【分析】根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.【解答】解:的倒数是5.故选A.【点评】此题主要考查倒数的意义,关键是求一个数的倒数的方法.2.下列计算正确的是()A.2a+3a=6aB.a2•a3=a6C.a8÷a4=a2D.(﹣2a3)2=4a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为2a+3a=(2+3)a=5a,故本选项错误;B、应为a2•a3=a2+3=a5,故本选项错误;C、应为a8÷a4=a8﹣4=a4,故本选项错误;D、(﹣2a3)2=4a3×2=4a6,正确.故选D.【点评】本题考查合并同类项法则,同底数幂的乘法,同底数幂的除法,积的乘方的性质,熟练掌握运算性质是解题的关键.3.下列图形中是轴对称图形,但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念对各选项图形分析判断后即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形,轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知点P(﹣1,4)在反比例函数的图象上,则k的值是()A.B.C.4D.﹣4【考点】待定系数法求反比例函数解析式.【专题】待定系数法.【分析】根据反比例函数图象上的点的坐标特征,将P(﹣1,4)代入反比例函数的解析式,然后解关于k的方程即可.【解答】解:∵点P(﹣1,4)在反比例函数的图象上,∴点P(﹣1,4)满足反比例函数的解析式,∴4=,解得,k=﹣4.故选D.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上的点的坐标特征”这一知识点.5.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.6.如图,市政府准备修建一座高AB为6m的过街天桥,已知∠ACB为天桥的坡面AC与地面BC的夹角,且sin∠ACB=,则坡面AC的长度为()A.6mB.8mC.10mD.12m【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用锐角三角函数关系求出AC的长即可.【解答】解:由题意可得:sin∠ACB==,∵AB=6m,∴=,解得:AC=10,故选:C.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.8.如图,在△ABC中,D、F、E分别为边BC、AB、AC上的一点,连接BE、FD,它们相交于点G,连接DE,若四边形AFDE是平行四边形,则下列说法正确的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由四边形AFDE是平行四边形,可得AE∥DF,DE∥AB,DE=AF,根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解:A、∵四边形AFDE是平行四边形,∴AE∥DF,DE∥AB,DE=AF,∴△BFG∽△EDG,∴,∴,故正确;B、∵,,∴,故错误;C、∵DF∥AC,∴,故错误;D、∵,,∴=.故错误.故选A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°【考点】旋转的性质.【分析】根据旋转的性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和计算出∠C'CA的度数,再由平行线的性质即可得到∠BAC的大小.【解答】解:∵△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,∴AC=AC′,∠CAC′=40°,∴∠AC′C=∠ACC′=70°,∵CC′∥AB,∴∠BAC=∠ACC′=70°,故选D.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A.上午8:30B.上午8:35C.上午8:40D.上午8:45【考点】函数的图象.【专题】压轴题.【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案.【解答】解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5﹣)小时,所以乙的速度为:2÷=12,所以乙走完全程需要时间为:4÷12=(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.故选C.【点评】在做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.二、填空题(

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功