黑龙江省哈尔滨市松北区2016届中考数学模拟试题一一、选择题1.﹣的倒数是()A.﹣3B.﹣C.D.32.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.﹣22=﹣2D.=13.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣26.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=819.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.510.在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论:(1)甲先到达终点;(2)前30分钟,甲在乙的前面;(3)第48分钟时,两人第一次相遇;(4)这次比赛的全程是28千米,其中正确的个数是()A.1B.2C.3D.4二、填空题11.据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学记数法表示为.12.计算:=.13.在函数中,自变量x的取值范围是.14.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.15.分解因式:﹣x3+2x2﹣x=.16.不等式组的解集是.17.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为.18.如图,AB为⊙O的直径,延长AB至点D,使BD=OB,DC切⊙O于点C,点B是的中点,弦CF交AB于点E.若⊙O的半径为2,则CF=.19.矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.20.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上.若AM:MB=AN:ND=1:2,则tan∠MCN=.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.先化简,再求值:÷(1+),其中x=2cos45°﹣tan30°.22.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(1)过A、B作线段AB的垂线段PQ,MN,使之等于线段AB长的2倍;(2)在格点至少找出三个点,标上字母,使它们与AC边构成的三角形与△ABC的面积相等,并写出结论.23.某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?24.在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC于G,GF⊥BC于F,连接EF.(1)如图1,求证:四边形AEFG是菱形;(2)如图2,若E为BG的中点,过点E作EM∥BC交AC于M,在不添加任何辅助线的情况下,请直接写出图2中是CM长倍的所有线段.25.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?26.如图1,AB是⊙O的直径,OD⊥AB,点E为⊙O上一点,过E作⊙O的切线与OD交于点D,连接BE,BE与OD交于点F.(1)求证:DE=DF;(2)如图2,点G在⊙O上,连接EG,交OD于点K,连接BG并延长交OD于点M,若EK=EF,求证:∠OMB=2∠ABE;(3)在(2)的条件下,若DM=2,tan∠OMB=,求线段EF的长.27.如图1,在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,OC=3,交直线OD于D,直线OD的解析式为y=x,点D的横坐标为4.(1)求此抛物线的解析式;(2)在(1)中如图2,点P为y轴左侧抛物线上一点,作PE⊥y轴,垂足为E,交抛物线另一侧于F,连接CF,求PE•tan∠ECF的值;(3)在(2)中如图3,连接OP,M为y轴正半轴上一点,N为射线OD上一点,是否存在点P满足OP=MN,∠PON+∠OMN=180°,且ON=2OM?若存在,求出此时P点的坐标;若不存在,请说明理由.2016年黑龙江省哈尔滨市松北区中考数学模拟试卷(一)参考答案与试题解析一、选择题1.﹣的倒数是()A.﹣3B.﹣C.D.3【考点】倒数.【专题】计算题.【分析】根据倒数的定义可得到﹣的倒数为﹣3.【解答】解:﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的定义:a(a≠0)的倒数为.2.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.﹣22=﹣2D.=1【考点】幂的乘方与积的乘方;同底数幂的乘法;零指数幂;负整数指数幂.【分析】利用幂的乘方与积的乘方,同底数幂的乘法,零指数幂及负整数指数幂的法则判定即可.【解答】解:A、(﹣a3)2=a6,故本选项不正确,B、a2•a3=a5,故本选项不正确,C、﹣22=﹣2,故本选项正确,D、cos60°﹣=0,故本选项不正确,故选:C.【点评】本题主要考查了幂的乘方与积的乘方,同底数幂的乘法,零指数幂及负整数指数幂,解题的关键是熟记幂的乘方与积的乘方,同底数幂的乘法,零指数幂及负整数指数幂法则.3.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.4.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】直线的性质:两点确定一条直线.【专题】应用题.【分析】根据公理“两点确定一条直线”来解答即可.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点评】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.5.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣2【考点】反比例函数的性质.【分析】根据反比例函数的性质:当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行分析即可.【解答】解:A、图象必经过点(﹣1,2),说法正确,不合题意;B、k=﹣2<0,每个象限内,y随x的增大而增大,说法错误,符合题意;C、k=﹣2<0,图象在第二、四象限内,说法正确,不合题意;D、若x>1,则﹣2<y<0,说法正确,不合题意;故选:B.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【点评】考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.7.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】多边形内角与外角.【专题】计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81B.100(1﹣x)2=81C.100(1﹣x%)2=81D.100x2=81【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】若两次降价的百分率均是x,则第一次降价后价格为100(1﹣x)元,第二次降价后价格为100(1﹣x)(1﹣x)=100(1﹣x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.【解答】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选:B.【点评】本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.9.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5【考点】平行线分线段成比例.【分析】直接根据平行线分线段成比例定理即可得出结论.【解答】解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选B.【点评】本题考查的是平行线分线段成比例定理,