2021/9/91第三章大变形问题的有限元分析目的:以大变形问题为例,介绍几何非线性问题的有限元方法。特点:与线性有限元方法比较,几何关系不再是线性的。内容:引言大变形问题的应变描述大变形分析中的应力描述及本构关系大变形问题有限元方程的建立大变形分析中的载荷处理小结2021/9/92引言几何非线性问题:位移与应变成非线性(微分意义上)关系。物理现象:将位移(转动)和/或应变较大的问题统称为大变形问题,有时称为有限变形问题。这类问题又分为大位移(转动)小应变问题及大位移大应变问题两大类。研究意义:和材料非线性问题一样重要。例如,平板的弯曲问题,大挠度理论分析结果更符合实际情况;薄壳的屈曲,非线性理论的预测值更好。又例如,对于橡皮型材料,大变形还必须考虑本构关系的变化,这与纯粹的材料非线性又有区别。几何线性问题:位移与应变成线性(微分)关系;研究现状:大变形问题有限元分析的理论和方法存在不同学派间的争鸣,尚未得到一个权威性的结论。随之并发的其它问题,如解的稳定性、收敛性及收敛率等,都有待进一步深入研究。2021/9/93大变形问题的应变描述(1/4)问题的特点:由于变形较大,使得不同时刻物体具有差别不能忽略的不同构型,这是大变形问题分析的基本出发点。初始构型(0时刻)(a)(b)(c)IXixiy现时构型(t时刻)当前构型(时刻)tt连续介质力学理论对物体经历大变形后的变形有严格的定义和推导。这里不准备过多引入复杂的概念和符号,而是与小变形理论对照,介绍进行大变形分析时必需的几个概念和术语。大变形问题的分析方法:增量法。2021/9/94大变形问题的应变描述(2/4)描述的出发点:物体的变形描述建立在确定的参考构型上。大变形分析由于采用增量方法,需经常用到它们的增量形式。Green应变张量:以初始构型为参考构型所定义的应变,数学表示为,,,,12KLKLLKMKMLuuuu现时(Updated)Green应变张量:以现时构型为参考构型所定义的应变,数学表示为,,,,12klkllkmkmluuuu注意:我们用下标的大小写表示坐标的大小写,对应于不同的构型。2021/9/95大变形问题的应变描述(3/4)应变增量:Green应变增量:现时(Updated)Green应变增量:,,,,,,1122IJKJKJKIKIKIKJKIKJIJIJuuuuuue线性部分非线性部分***1122jikkijjiijijijuuuuxxxxe线性部分非线性部分*mnIJmnIJxxXX二者之间满足张量变换关系!2021/9/96大变形问题的应变描述(4/4)应变增量:(续)-对于大变形小应变情形Green应变增量退化成:现时(Updated)Green应变增量退化成:,,,,,,1212IJKJKJKIKIKIKKKJIJuuuuuuIJIJe线性部分非线性部分是高阶小量*1212kkijjiijjiuuuxxuxx**ijije线性部分非线性部分是高阶小量*12jiIJijijjiuuXX对于小变形情形2021/9/97大变形问题的应力描述(1/2)应力是借助于微元体来定义的,但在大变形分析中,必须注意微元体所在的构型。Euler应力:与应变类似,连续介质力学理论具有严格的应力定义和多种不同的应力概念。这里也只介绍后面将要用到的几种。从当前构型中取出微元体,在其上定义的应力称为Euler应力,用表示。Euler应力代表物体的真实应力。然而,当前构型是待求的未知构型,因而,有必要通过已知构型上的微元体再对应力进行描述。Kirchhoff应力:通过初时构型上的微元体定义的应力称为Kirchhoff应力,用表示;通过现时构型的微元体定义的应力称为现时(Updated)Kirchhoff应力,用表示。S*S2021/9/98大变形问题的应力描述(2/2)Kirchhoff、现时Kirchhoff及Euler应力(增量)间的关系:根据张量的坐标变换规则,它们之间还有以下关系**ijijijSS现时Kirchhoff应力Euler应力现时Kirchhoff应力增量时刻t时刻tt*1jiijklNKLxxSSXXD**11jiijijklklNklyySxxD123123,,,,NiJxxxxDXXXX*1123123,,,,NijyyyyDxxxx特点:以现时构型为参考。2021/9/99大变形分析中的本构关系(1/5)本构关系的客观性要求:需要选取合适的应力-应变共轭对描述材料的本构关系。弹性材料:加载曲线与卸载曲线相同的材料。本构关系有三种形式ijijklklAijklAijijW12ijijklklWA,为常数线弹性材料(elasticity)超弹性材料(hyperelasticity)ijklijklAtt次弹性材料(hypoelasticity)212ijkliljmijlmAG(大变形分析中)2021/9/910大变形分析中的本构关系(2/5)弹性材料若Kirchhoff应力与Green应变之间存在一一对应关系,则称这类材料为弹性材料IJKLSFIJIJKLKLSA不依赖于构型变化弹性本构关系多用于大位移(转动)小应变的情形。特殊情形2021/9/911大变形分析中的本构关系(3/5)超弹性材料假定材料具有单位质量的应变能函数,再根据能量原理来定义本构关系,这类材料称为超弹性材料。KLWW(不限于这种形式)总之,对于一般的大变形问题,在连续介质力学中常用超弹性来表征材料的本构关系。012IJIJKLKLWA例如0KLIJIJWS20MNIJKLIJKLIJKLKLWSA一阶近似初始构型时材料的密度-常数增量形式…坐标变换现时Kirchhoff应力或增量形式…Case-1Case-2*ijWW不能简化!一阶近似****klijijWS现时构型时材料的密度-随变形变化。相比较2021/9/912大变形分析中的本构关系(4/5)次弹性材料若应力率与变形率之间成线性变化规律,这类材料称为次弹性材料。但本构关系描述时要求“率”为与刚体转动无关的客观时间导数。同乘以时间增量增量形式…Case-2IJIJKLKLSAtCase-1**JijijklklSAD可以证明,这两个率都与转动无关******JijijikkjjkkiSSSSJaumann应力率**12jiijijjivvDexx现时Green应变的线性部分可以证明,这两个率都与转动无关*12jiijjivvxx旋转率2021/9/913大变形分析中的本构关系(5/5)三种本构关系间的关系对于实际的大变形问题,上述三种本构关系并不等价。可以证明,弹性材料是一种特殊的次弹性材料,超弹性材料是一种特殊的弹性材料。实际材料所遵守的本构关系,只有通过实验测试才能得以确定。次弹性材料弹性材料超弹性材料2021/9/914大变形问题有限元方程的建立(1/6)与塑性力学有限元方法的异同区别:塑性力学的本构关系随加载变化,而大变形问题的构型随加载变化。TL?UL?本节讨论相似:都采用增量方法,都不显含时间。导致分析方法、应力应变描述、本构关系、控制方程的变化。构型对应构型相关,本节讨论。。。客观性描述2021/9/915大变形问题有限元方程的建立(2/6)TL法有限元方程的建立特点:始终以初始(0时刻)构型做为应力与应变描述的参考构型,因而,采用Kirchhoff应力(增量)和Green应变(增量)。t时刻:TL法:TotalLagrangianDescription(TLD)虚功方程:优点:参考构型不发生变化,本构关系与虚功方程描述形式简单。000eTTTTttttttttVSSubdVutdSuP时刻:tt000tttttttttttttteTTTTttVSSubdVutdSuP两式相减,得增量型虚功方程:000TTTVTTTeeSTeSSubeSubdVuttdSuPP2021/9/916大变形问题有限元方程的建立(3/6)TL法有限元方程的建立(续)将有限元位移插值、初始构型下的几何关系和本构关系引入后,得到刚度矩阵形式较复杂,因问题的类型而不同。ttIJIJKSUFS载荷向量TL法的求解步骤:Step1:利用有限元方程求出间隔内的位移增量;~tttIUStep2:利用几何关系,计算Green应变增量;IJStep3:利用本构关系,计算Kirchhoff应力增量;IJSStep4:更新当前时刻;更新当前应力;计算当前刚度矩阵和载荷向量。tttIJIJIJSSSStep5:转到Step1,进入下一个时间间隔计算。2021/9/917大变形问题有限元方程的建立(4/6)UL法有限元方程的建立特点:总以t时刻(即现时构型)为参考构型,也就是说参考构型是变化的,因而,采用现时Kirchhoff应力(增量)和现时Green应变(增量)。UL法:UpdatedLagrangianDescription(ULD)仿照TL法的推导,可得虚功方程:优点:可以处理加载方式更为复杂的问题,亦可处理边界非线性问题等。TL法的增量型虚功方程:000TTTVTTTeeSTeSSubeSubdVuttdSuPP***0TTTVTTTNNeeSTeSubeubdVuttdSuPP2021/9/918大变形问题有限元方程的建立(5/6)UL法有限元方程的建立(续)将有限元位移插值、初始构型下的几何关系和本构关系引入后,得到;;ttttKUFttIJIJKSUFSUL法的求解步骤及与TL法的比较:Step1:利用有限元方程求出间隔内的位移增量;~tttIUStep2:利用几何关系,计算现时Green应变增量;Step3:利用本构关系,计算现时Kirchhoff应力增量;Step4:更新当前时刻;更新当前应力,根据计算,并且使得;更新当前构型;计算当前刚度矩阵与载荷向量。tttStep5:转到Step1,进入下一个时间间隔计算。*ij*ijS*tijklSttijijtttijijijiiixUx2021/9/919大变形问题有限元方程的建立(6/6)小结大变形问题有限元方法与弹塑性问题有限元方法都是在增量意义上通过拟线性化,进而加以求解。但弹塑性问题有限元方法在确定弹塑性状态时还应当进行迭代或按优化问题处理,这点与接触问题类似。所以,从方法上说,弹塑性问题有限元方法包含了大变形问题有限元和接触问题有限元两类问题的所有特点