2015年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码04184)本试卷共3页,满分l00分,考试时间l50分钟。考生答题注意事项:1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。说明:在本卷中。AT表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A︱表示方阵A的行列式,r(A)表示矩阵A的秩。第一部分选择题一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。1.已知2阶行列式A.-2B.-lC.1D.23.设向量组可由向量组线性表出,则下列结论中正确的是A.若s≤t,则必线性相关B.若s≤t,则必线性相关C.若线性无关,则s≤tD.若线性无关,则s≤t4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则下列结论中正确的是A.若r1=m,则Ax=O有非零解B.若r1=n,则Ax=0仅有零解C.若r2=m,则Ax=b有无穷多解D.若r2=n,则Ax=b有惟一解5.设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=第二部分非选择题二、填空题(本大题共l0小题。每小题2分,共20分)请在答题卡上作答。6.设行列式中元素aij的代数余子式为Aij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________.8.设矩阵,若矩阵A满足AP=B,则A=________.9.设向量,,则由向量组线性表出的表示式为=____________.10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应满足__________.11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为若该方程组无解,则数k=_________.12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________.14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________.15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________.三、计算题(本大题共7小题,每小题9分,共63分)请在答题卡上作答。16.计算行列式的值.17.已知矩阵,若矩阵x满足等式AX=B+X,求X.18.已知矩阵A,B满足关系式B=E-A,其中,计算(1)E+A+A2与A3;(2)B(E+A+A2).19.求向量组a1=(1,-l,2,1)T,a2=(1,0,2,2)T,a3=(0,2,1,1)T,a4=-(1,0,3,1)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.20.设3元线性方程组,问数a,b分别为何值时,方程组有无穷多解?并求出其通解(要求用其一个特解和导出组的基础解系表示).21.设矩阵,求A的全部特征值和特征向量.22.用配方法化二次型f(x1,x2,x3)=x12-x1x2+x2x3为标准形,并写出所作的可逆线性变换.四、证明题(本大题共l小题,共7分)请在答题卡上作答。23·设向量组a1,a2,a3的秩为2,且a3可由a1,a2线性表出,证明a1,a2是向量组a1,a2,a3的一个极大线性无关组.