1(a)(b)习题1-1图(a)(b)习题1-2图FDRFACBDAxFAyF(a-1)AyFFBCAAxF'FC(a-2)CDCFDRF(a-3)AxFDRFFACBDAyF(b-1)1-1图a、b所示,Ox1y1与Ox2y2分别为正交与斜交坐标系。试将同一方F分别对两坐标系进行分解和投影,并比较分力与力的投影。解:(a),图(c):11sincosjiFFF分力:11cosiFFx,11sinjFFy投影:cos1FFx,sin1FFy讨论:=90°时,投影与分力的模相等;分力是矢量,投影是代数量。(b),图(d):分力:22)tansincos(iFFFx,22sinsinjFFy投影:cos2FFx,)cos(2FFy讨论:≠90°时,投影与分量的模不等。1-2试画出图a、b两情形下各物体的受力图,并进行比较。比较:图(a-1)与图(b-1)不同,因两者之FRD值大小也不同。1-3试画出图示各物体的受力图。1yFx1xF1yF1xFyF(c)2xF2yF2y2x2xF2yFF(d)2习题1-3图1-4图a所示为三角架结构。力F1作用在B铰上。杆AB不计自重,杆BD杆自重为W。试画出图b、c、d所示的隔离体的受力图,并加以讨论。FAxFAyFDCBABF或(a-2)FBBFAFDCA(a-1)BFAxFAAyFFBC(b-1)WDFBDCAyFAxF(c-1)FAFCBBFA或(b-2)DAFABCBF(d-1)CFCAAF(e-1)AxFAAyFDFDCBF或(d-2)BFFCDB(e-2)OOxFOyFW1OFA(f-1)FAFDCABBF(e-3)'FAOOxFOyFAW(f-2)AF1OFA1O(f-3)cFFAFDFBFAFA3AxFC'CxF'BFBAyF'FCyA(b-3)EFDFED(a-3)CFFCE'FE(a-2)习题1-5图EEFBBF(b-2)CxFCCyFWT(b-1)AyFAxF'BF'CFC'DFADEDFEF'EFEBBFCFCD(c)AFADGFCHFH(a)BFBC'CFD'DFAxFAyFA(a-1)1-5试画出图示结构中各杆的受力图。1-6图示刚性构件ABC由销钉A和拉杆GH支撑,在构件的点C作用有一水平力F。试问如果将力F沿其作用线移至点D或点E(如图示),是否会改变销钉A的受力状况。解:由受力图1-6a,1-6b和1-6c分析可知,F从C移至E,A端受力不变,这是因为力F在自身刚体ABC上滑移;而F从C移至D,则A端受力改变,因为HG与ABC为不同的刚体。BWDyFDxFD2BF'F1(d-2)AFABxB2F'yB2F'1F(c-1)习题1-6图AFAB1BF(b-1)DyFDDxFWyB2FCBxB2F(b-2)xB2F'1F1BF'yB2F'B(b-3)BWDxFDCyB2F'xB2F'(c-2)AFAB1BF(d-1)AFAFDCHFEH(b)AFAGFCHFHFDGFHH(c)DyF4习题1-8图AxFAAyFBBFC'CxF'CyF(a)FW30yxBNF(a)30xWNFFy(b)1-7试画出图示连续梁中的AC和CD梁的受力图。1-8图示压路碾子可以在推力或拉力作用下滚过100mm高的台阶。假定力F都是沿着连杆AB的方向,与水平面成30°的夹角,碾子重为250N。试比较这两种情形下所需力F的大小。解:图(a):54arcsin0xF0sin)60sin(WF1672FN图(b):13.530xF0sin)30cos(WFN217F1-9两种正方形结构所受力F均已知。试分别求其中杆1、2、3所受的力。解:图(a):045cos23FFFF223(拉)F1=F3(拉)045cos232FFF2=F(受压)图(b):033FFF1=0∴F2=F(受拉)AF3F2F1F(b-1)习题1-7图习题1-9图CxF1FCyFC2FDDyFDxF(b)F3F451FA13(a-1)3F2FD3F(a-2)D3F3F(b-2)5EDFDDBFF(a)CBFBDBFABF(b)1-10图示为一绳索拔桩装置。绳索的E、C两点拴在架子上,点B与拴在桩A上的绳索AB连接,在点D加一铅垂向下的力F,AB可视为铅垂,DB可视为水平。已知=0.1rad,力F=800N。试求绳AB中产生的拔桩力(当很小时,tan≈)。解:0yF,FFEDsinsinFFED0xF,DBEDFFcosFFFDB10tan由图(a)计算结果。可推出图(b)中FAB=10FDB=100F=80kN。2-3图ab图cA:FA=FB=M/22-3bFA=FB=M/l2-3CFA=FBD=M/l2-5习题1-10图6W=2kN,T=WΣFx=0,FA=FBΣMi=0,W×300−FA×800=0,FA=3/8W=0.75kN,FB=0.75kN.2-6F3⋅d−M=0,F3=M/d,F=F3(压)ΣFx=0,F2=0,ΣFy=0,F=F1=M/d(拉)2-77解:W/2=4.6kNΔF=6.4−4.6=1.8kNΣMi=0,−M+ΔF⋅l=0M=ΔF⋅l=1.8×2.5=4.5kN·m2-8解:对于图(a)中的结构,CD为二力杆,ADB受力如图所示,根据力偶系平衡的要求,由dMdMFFRCRA222对于图(b)中的结构,AB为二力杆,CD受力如习题3-6b解1图所示,根据力偶系平衡的要求,由dMFFdMFFDRADRC/'/2-98解:BC为二力构件,其受力图如图所示。考虑AB平衡,A、B二处的形成力偶与外加力偶平衡。NBDMFFBA4.2692/8.122.18002-102-11dMFFAD1dMFFCD2DDFF12MM=9FBy=FAy=0FBX=M/dFRB=M/d(←)由对称性知FRA=M/d(→)3-1A:ΣFx=0,FAx=0ΣMA=0,−M−FP×4+FRB×3.5=0,−60−20×4+FRB×3.5=0,FRB=40kN(↑)ΣFy=0,FAy+FRB−FP=0,FAy=−20kN(↓)对于图b中的梁,KNFFyFFFFqddFdFdFdqdMdFMRABRpBRppBRpp15,0210322103.2.2.0113-210解ΣFx=0,FAx=0ΣFy=0,FAy=0(↑)ΣMA=0,MA+M−Fd=0,MA=Fd−M3-3解:ΣMA(F)=0,−W×1.4−FS×1+FNB×2.8=0,FNB=13.6kNΣFy=0,FNA=6.4kN3-4ΣFy=0,FBy=W+W1=13.5kNΣMB=0,5FA−1W−3W1=0,FA=6.7kN(←),ΣFx=0,FBx=6.7kN(→)113-7解:以重物为平衡对象:图(a),ΣFy=0,TC=W/cosα(1)以整体为平衡对象:图(b),ΣFx=0,FBx=TC’sinα=WtanαΣMB=0,−FRA⋅4h+TC′cosα⋅2h+TC′sinα⋅4h=0,FRA=(1/2+tanα)W(↑)ΣFy=0,FBy=(1/2-tanα)W(↑)3-9解:以整体为平衡对象,有ΣMA=0FRB×2×2.4cos75°−600×1.8cos75°−W(1.2+3.6)cos75°=0,FRB=375NΣFy=0,FRA=525N以BC为平衡对象,有−TEF×1.8sin75°−150×1.2cos75°+FRB×2.4cos75°=0TEF=107N3-1112习题4-2图:以托架CFB为平衡对象,有ΣFy=0,FBy=FW2(1)以杠杆AOB为平衡对象,有ΣMO=0,FW⋅l−FBy⋅a=0Fw1/Fw2=a/l4-2图示直杆ACB在两端A、B处固定。关于其两端的约束力有四种答案。试分析哪一种答案最合理。正确答案是D。5-113图a图b图c图d5-21b145-35-4解:(a)A截面:FQ=b/(a+b)FP,M=0C截面:FQ=b/(a+b)FP,M=ab/(a+b)FPD截面:FQ=-a/(a+b)FP,M=ab/(a+b)FPB截面:FQ=-a/(a+b)FP,M=0(b)A截面:FQ=M0/(a+b),M=0C截面:FQ=M0/(a+b),M=a/(a+b)M0D截面:FQ=-M0/(a+b),M=b/(a+b)M0B截面:FQ=-M0/(a+b),M=0(c)A截面:FQ=5/3qa,M=0C截面:FQ=5/3qa,M=7/6qa2B截面:FQ=-1/3qa,M=0(d)A截面:FQ=1/2ql,M=-3/8qa2C截面:FQ=1/2ql,M=-1/8qa2D截面:FQ=1/2ql,M=-1/8qa2B截面:FQ=0,M=0(e)A截面:FQ=-2FP,M=FPlC截面:FQ=-2FP,M=0B截面:FQ=FP,M=015(f)A截面:FQ=0,M=FPl/2C截面:FQ=0,M=FPl/2D截面:FQ=-FP,M=FPl/2B截面:FQ=-FP,M=05-5(a)FQ(x)=-M/2l,M(x)=-M/2lx(0≤x≤l)FQ(x)=-M/2l,M(x)=-Mx/2l+M(l≤x≤2l)FQ(x)=-M/2l,M(x)=-Mx/2l+3M(2l≤x≤3l)FQ(x)=-M2l,M(x)=-Mx/2l+2M(3l≤x≤4l)(b)FQ(x)=-(1/4)ql-qx,M(x)=ql2-(1/4)qlx–(1/2)qx2(0≤x≤l)FQ(x)=-(1/4)ql,M(x)=(1/4)ql(2l-x)(l≤x≤2l)(c)FQ(x)=ql-qx,M(x)=qlx+ql2-(1/2)qx2(0≤x≤2l)FQ(x)=0,M(x)=ql2(2l≤x≤3l)(d)FQ(x)=(5/4)ql-qx,M(x)=(5/4)qlx-(1/2)qx2(0≤x≤2l)FQ(x)=-ql+q(3l-x),M(x)=ql(3l-x)–(1/2)q(3l-x)2(2l≤x≤3l)(e)FQ(x)=qx,M(x)=(1/2)qx2(0≤x≤l)FQ(x)=ql-q(x-l),M(x)=ql(x-1/2)-(1/2)q(x-l)2(l≤x≤2l)(f)16(c)(d)ABABC)(ql2lMQFQF454141(a-1)(b-1)ADECMABCMB2M2MM2341M22ql(a-2)(b-2)ADBC11.51)(2qlM)(2qlMADBC322521(c-2)(d-2)(e)(f)FQ(x)=-ql/2+qx,M(x)=-(1/2)qlx+(1/2)qx2(0≤x≤l)FQ(x)=-ql/2+q(2l-x),M(x)=(ql/2)(2l-x)-(1/2)q(2l-x)2(l≤x≤2l)5-6画出5-5图示各梁的剪力图和弯矩图,并确定maxQ||F、maxM。解:(a)0AM,lMFB2R(↑)0yF,lMFA2R(↓)lMF2||maxQ,MM2||max(b)0AM022R2lFlqllqlqlBqlFB41R(↑)0yF,qlFA41R(↓)2R4141qllqllFMBC(+)2qlMAqlF45||maxQ,2max||qlM(c)0yF,qlFAR(↑)0AM,2qlMA0DM,022DMlqllqlql223qlMDqlFmaxQ||,2max23||qlM(d)0BM0232RlqlllqlFAqlFA45R(↑)0yF,qlFB43R(↑)0BM,22lqMB0DM,23225qlMDqlF45||maxQ,2max3225||qlMMACFRA1BABACFRBFRA1(ql)(ql)ABCDlADBC10.75QFQF1.251(c-1)(d-1)