二次函数的图象和性质34

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

y=ax2(a≠0)a0a0图象开口方向顶点坐标对称轴增减性最值xyOyxO向上向下(0,0)(0,0)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由|a|来确定的,一般说来,|a|越大,抛物线的开口就越小.x…..-2-1012……y=x2……41014……y=x2+1…………8642-2-4y-10-5510xOy=x2y=x2+152125函数y=x2+1的图象与y=x2的图象的位置有什么关系?函数y=x2+1的图象可由y=x2的图象沿y轴向上平移1个单位长度得到.函数y=x2+1的图象与y=x2的图象的形状相同吗?相同8642-2-4y-10-5510xOx…..-2-1012……y=x2……41014……y=x2-2…………y=x2y=x2-22-1-2-12函数y=x2-2的图象可由y=x2的图象沿y轴向下平移2个单位长度得到.函数y=x2-2的图象与y=x2的图象的位置有什么关系?函数y=x2-2的图象与y=x2的图象的形状相同吗?相同函数y=ax2(a≠0)和函数y=ax2+k(a≠0)的图象形状,只是位置不同;当k0时,函数y=ax2+k的图象可由y=ax2的图象向平移个单位得到,当k〈0时,函数y=ax2+k的图象可由y=ax2的图象向平移个单位得到。42-2-4-6-8y-10-5510xOy=-x2-2y=-x2+3y=-x2函数y=-x2-2的图象可由y=-x2的图象沿y轴向下平移2个单位长度得到.函数y=-x2+3的图象可由y=-x2的图象沿y轴向上平移3个单位长度得到.图象向上移还是向下移,移多少个单位长度,有什么规律吗?上加下减相同上k下|k|当a0时,抛物线y=ax2+k的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于;当a0时,抛物线y=ax2+k的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于。42-2-4-6-8y-10-5510xO108642-2y-10-5510xOy=-x2-2y=-x2+3y=-x2y=x2-2y=x2+1y=x2向上y轴(0,k)减小增大0小k向下y轴(0,k)增大减小0大k(1)函数y=4x2+5的图象可由y=4x2的图象向平移个单位得到;y=4x2-11的图象可由y=4x2的图象向平移个单位得到。(3)将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是。将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是。(2)将函数y=-3x2+4的图象向平移个单位可得y=-3x2的图象;将y=2x2-7的图象向平移个单位得到可由y=2x2的图象。将y=x2-7的图象向平移个单位可得到y=x2+2的图象。上5下11下4上7上9y=4x2+3y=-5x2-4(4)抛物线y=-3x2+5的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于。6.二次函数y=ax2+k(a≠0)的图象经过点A(1,-1),B(2,5),则函数y=ax2+k的表达式为。若点C(-2,m),D(n,7)也在函数的图象上,则点C的坐标为点D的坐标为.(5)抛物线y=7x2-3的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于。下y轴(0,5)减小增大0大5上y轴(0,-3)减小增大0小-3y=2x2-3(-2,5))7,5()7,5(或y=ax2+k(a≠0)a0a0开口方向顶点坐标对称轴增减性最值向上向下(0,k)(0,k)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。x=0时,y最小=kx=0时,y最大=k抛物线y=ax2+k(a≠0)的图象可由y=ax2的图象通过上下平移得到.y=ax2+k(a≠0)a0a0开口方向顶点坐标对称轴增减性最值向上向下(0,k)(0,k)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。x=0时,y最小=kx=0时,y最大=k抛物线y=ax2+k(a≠0)的图象可由y=ax2的图象通过上下平移得到.23xy213xy213xy23xy213xy213xyy二次函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象X=-1X=1开口大小抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x+m)2(a0)y=a(x+m)2(a0)(-m,0)(-m,0)直线x=-m直线x=-m在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=-m时,最小值为0.当x=-m时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:越小,开口越大.越大,开口越小.aa2mxay函数开口方向对称轴顶点坐标最值增减性在对称轴左侧在对称轴右侧y=ax2a>0a<0y=ax2+ka>0a<0y=a(x+m)2a>0a<0向上Y轴(0,0)最小值是0Y随x的增大而减小Y随x的增大而增大向下Y轴(0,0)最大值是0Y随x的增大而增大Y随x的增大而减小向上Y轴(0,k)最小值是kY随x的增大而减小Y随x的增大而增大向下Y轴(0,k)最大值是kY随x的增大而增大Y随x的增大而减小向上直线x=-m(-m,0)Y随x的增大而减小最小值是0Y随x的增大而增大向下直线x=-m(-m,0)最大值是0Y随x的增大而增大Y随x的增大而减小例1.填空题(1)二次函数y=2(x+5)2的图像是,开口,对称轴是,当x=时,y有最值,是.(2)二次函数y=-3(x-4)2的图像是由抛物线y=-3x2向平移个单位得到的;开口,对称轴是,当x=时,y有最值,是.抛物线向上直线x=-5-5小0右4向下直线x=44大0(3)将二次函数y=2x2的图像向右平移3个单位后得到函数的图像,其对称轴是,顶点是,当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)将二次函数y=-3(x-2)2的图像向左平移3个单位后得到函数的图像,其顶点坐是,对称轴是,当x=时,y有最值,是.y=2(x-3)2直线x=3(3,0)>3<3y=-3(x+1)2(-1,0)直线x=-1-1大0(5)将抛物线y=2x2-3先向上平移3单位,就得到函数的图象,在向平移个单位得到函数y=2(x-3)2的图象.y=2x2右3小结拓展你认为今天这节课最需要掌握的是________________?

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功