2.2.1对数与对数运算II2010—10--252.2对数函数复习:对数定义一般地,如果0,1aa且xaN那么数x叫做以a为底N的对数,记作,其中a叫做对数的底数,N叫做真数。式子叫做对数式.logaxNlogaN,1,0时当aa复习:有关性质⑴负数与零没有对数.⑵log10,alog1aa(3)对数恒等式logaNaN0,1aa且)0,1,0(Naa且复习:指数运算法则)()(),()(),(),(RnbaabRnmaaRnmaaaRnmaaannnmnnmnmnmnmnm推导一),(Rnmaaanmnm由n,Nlogm,M又logaNMaanm则设,,nmaNaM,)(lognmNMa所以.loglogNMaa推导二,,),(nmnmnmaNaMRnmaaa设由,log,log,nNmMaNMaanm又则,lognmNMa所以NMaaloglog推导三,),()(mmnnmaMRnmaa设由,,logmnnaaMmM则,logmnMna所以Mnalog积、商、幂的对数运算法则如果a0,a1,M0,N0,那么:)()()(3R)(nloglog2logloglog1loglog)(lognMMNMNMNMNManaaaaaaa解解用,logxa,logyazalog表示下列各式:32log)2(;(1)logzyxzxyaazxyaalog)(log)1(原式31212log)(log)2(zyxaa原式zyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log2练习P681例3:(1)(2))42(log752解:522log724log522log1422log=5+14=19解:原式5lg10025=原式=lg1025练习P682、3例4:计算下列各式的值小结积、商、幂的对数运算法则如果a0,a1,M0,N0,那么:)()()(3R)(nloglog2logloglog1loglog)(lognMMNMNMNMNManaaaaaaa)(logRnnana推论:探究:推导公式abbccalogloglog)0;1,0;1,0(bccaa且且探究证明:设由对数的定义可以得:,pab即证得pbalog,loglogpccab,loglogapbccabpccloglogabbccalogloglog这个公式叫做换底公式abbccalogloglog)0;1,0;1,0(bccaa且且通过换底公式,人们可以把其他底的对数转换为以10或e为底的对数,经过查表就能求出任意不为1的正数为底的对数。作业:P74习题2.2A组3(1)(3)(5)A组4