高一数学必修1课件本节课的学习预告:1.对数函数的定义2.画出对数函数的图象3.对数函数性质的探究一般地,函数y=logax(a>0,且a≠1)叫做对数函数.其中x是自变量,函数的定义域是(0,+∞)值域R巩固练习(1):P73方框练习T2(1){x|x≠0}(2){x|x4}(3){x|x1}(4){x|x0且x≠1}求下列函数的定义域:2a(1)ylogx=a(2)ylog(4x)=-71(3)ylogx1=-31(4)ylogx=一、对数函数的概念用描点法画出对数函数的图象。212ylogxylogx==和作图步骤:①列表,②描点,③连线。二、对数函数的图象二、对数函数的图象和性质文件名图象性质a>10<a<1定义域:值域:过定点在(0,+∞)上是在(0,+∞)上是对数函数y=logax(a>0,且a≠1)的图象与性质当x1时,当x=1时,当0x1时,(0,+∞)R(1,0),即当x=1时,y=0增函数减函数y0y=0y0当x1时,当x=1时,当0x1时,y0y=0y0补充性质二底数互为倒数的两个对数函数的图象关于x轴对称。补充性质一图形10.5y=logx0.1y=logx10y=logx2y=logx0xy0a1时,底数越小,其图象越接近x轴。底数互为倒数的两个对数函数的图象关于x轴对称。a1时,底数越大,其图象越接近x轴。比较下列各组中,两个值的大小:(1)log23.4与log28.5(2)log0.31.8与log0.32.7log23.4log28.5y3.42ylogx=x108.5∴log23.4log28.5解法1:画图找点比高低解法2:利用对数函数的单调性考察函数y=log2x,∵a=21,∴函数在区间(0,+∞)上是增函数;∵3.48.5∴log23.4log28.5比较下列各组中,两个值的大小:(1)log23.4与log28.5(2)log0.31.8与log0.32.7解法2:考察函数y=log0.3x,∵a=0.31,∴函数在区间(0,+∞)上是减函数;∵1.82.7∴log0.31.8log0.32.7(2)解法1:画图找点比高低小结比较下列各组中,两个值的大小:(1)log23.4与log28.5(2)log0.31.8与log0.32.7小结比较两个同底对数值的大小时:1.观察底数是大于1还是小于1(a1时为增函数0a1时为减函数)2.比较真数值的大小;3.根据单调性得出结果。注意:若底数不确定,那就要对底数进行分类讨论即0a1和a1比较下列各组中,两个值的大小:•(3)loga5.1与loga5.9解:①若a1则函数在区间(0,+∞)上是增函数;∵5.15.9∴loga5.1loga5.9②若0a1则函数在区间(0,+∞)上是减函数;∵5.15.9∴loga5.1loga5.9你能口答吗?10100.50.522331.51.5log6log8log6log8log0.6log0.8log6log8 变一变还能口答吗?10100.50.522331.51.5loglogloglogloglogloglognmnmnnm 则m n 则m n 则m nm 则 m n<>><<>><<<<<比较下列各组中两个值的大小:⑴log67,log76;⑵log3π,log20.8.解:⑴∵log67>log66=1log76<log77=1∴log67>log76⑵∵log3π>log31=0log20.8<log21=0∴log3π>log20.8注意:利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较上述两个对数的大小提示:logaa=1提示:loga1=0小技巧:判断对数与0的大小是只要比较(a-1)(b-1)与0的大小balog比较下列各组中两个值的大小:⑴log67,log76;⑵log3π,log20.8.注意:利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较上述两个对数的大小提示:logaa=1提示:loga1=0小技巧:判断对数与0的大小是只要比较(a-1)(b-1)与0的大小balog(3)巩固练习:P73T3二、对数函数的图象和性质;三、比较两个对数值的大小.一、对数函数的定义;㈠若底数为同一常数,则可由对数函数的单调性直接进行判断.㈡若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.㈢若底数、真数都不相同,则常借助1、0、-1等中间量进行比较比较两个对数值的大小.