花东中学高一级骆庆华y=log2x与y=log0.5x的图像分析函数y=log2xy=log0.5x图像定义域值域单调性过定点取值范围(0,+∞)(0,+∞)RR增函数减函数(1,0)(1,0)0x1时,y0x1时,y00x1时,y0x1时,y0对数函数y=logax的性质分析函数y=logax(a1)y=logax(0a1)图像定义域值域单调性过定点取值范围0log100log1xyxxyxaa时,当时,当(0,+∞)R在(0,+∞)上是增函数在(0,+∞)上是减函数(1,0)即loga1=00log100log1xyxxyxaa时,当时,当底数a影响着对数函数的性质例题与练习例4,求下列函数的定义域:2log)1(xya)4(log)2(xya解:(1)要使函数有意义:必须x20,即x≠0,所以y=logax2的定义域是:{x|x≠0}(2)要使函数有意义:必须4–x0,即x<4,所以y=loga(4–x)的定义域是:(-∞,4)练习:课本P113练习第2题例5,比较下列各题中两个数的大小:(1)log25.3与log24.7(2)log0.27与log0.29解:(1)∵底数a=21,∴函数y=log2x是增函数;又∵5.34.7∴log25.3log24.7(2)∵底数a=0.21,∴函数y=log0.2x是减函数;又∵79∴log0.27log0.29底数a影响着对数函数的性质(3)2.5log1.3logaa与)10(aa,解:当a1时,函数在(0,+∞)上是增函数,此时2.5log1.3logaaxyalogxyalog当0a1时,函数在(0,+∞)上是减函数,此时2.5log1.3logaa对数函数y=logax的性质函数y=logax(a1)y=logax(0a1)图像定义域值域单调性过定点取值范围0log100log1xyxxyxaa时,当时,当(0,+∞)R在(0,+∞)上是增函数在(0,+∞)上是减函数(1,0)即loga1=00log100log1xyxxyxaa时,当时,当底数a影响着对数函数的性质小结:作业:课本第113页习题A组第3,4题