数学221用样本的频率分布估计总体分布课件新人教B版必修3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.2.1用样本的频率分布估计总体分布问题提出1.随机抽样有哪几种基本的抽样方法?2.随机抽样是收集数据的方法,如何通过样本数据所包含的信息,估计总体的基本特征,即用样本估计总体,是我们需要进一步学习的内容.简单随机抽样、系统抽样、分层抽样.探究:我国是世界上严重缺水的国家之一,城市缺水问题较为突出。某市政府为了节约用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的按平价收费,超过a的按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理?你认为,为了较为合理地确定出这个标准,需要做什么工作?根据这些数据你能得出用水量其他信息吗?从上面这些数字,我们很容易发现的居民的月均用水量的最小值是0.2t,最大值是4.3t.其他在0.2至4.3之间。很难再发现其他信息。我们很难从随意记录的数据中直接看出规律。为此,我们需要对统计数据进行整理与分析。表2-1100位居民的月均用水量(单位:t)3.12.52.02.01.51.01.61.81.91.63.42.62.22.21.51.20.20.40.30.43.22.72.32.11.61.23.71.50.53.83.32.82.32.21.71.33.61.70.64.13.22.92.42.31.81.43.51.90.84.33.02.92.42.41.91.31.41.80.72.02.52.82.32.31.81.31.31.60.92.32.62.72.42.11.71.41.21.50.52.42.52.62.32.11.61.01.01.70.82.42.82.52.22.01.51.01.21.80.62.2思考1:上述100个数据中的最大值和最小值分别是什么?由此说明样本数据的变化范围是什么?思考2:样本数据中的最大值和最小值的差称为极差.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?0.2~4.3(4.3-0.2)÷0.5=8.2思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].分组频数累计频数频率[0,0.5)40.04[0.5,1)正80.08[1,1.5)正正正150.15[1.5,2)正正正正220.22[2,2.5)正正正正正250.25[2.5,3)正正140.14[3,3.5)正一60.06[3.5,4)40.04[4,4.5]20.02合计1001.00思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?用样本的频率分布估计总体分布.思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?88%的居民月用水量在3t以下,可建议取a=3.思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的大小可能会导致结论出现偏差,实践中,对统计结论是需要进行评价的.思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差.(极差=样本数据中最大值与最小值的差)第二步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各小组内的个数,频率=频数÷样本容量)知识探究(二):频率分布直方图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距.频率分布直方图中各小长方形的和高度在数量上有何特点?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O宽度:组距高度:频率组距思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O各小长方形的面积=对应频率各小长方形的面积之和=1思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O(2)大部分居民的月均用水量集中在一个中间值附近,只有少数居民的月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1为组距画频率分布直方图吗?与分组数(或组距)及坐标系的单位长度有关.月均用水量/t频率组距0.40.30.20.112345O例2某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下.甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.请根据数据画出茎叶图.【思路点拨】画茎叶图时,数字8是一位数,十位数字可以写成0.【解】如图所示.练习1.有一个容量为50的样本数据分组的频数如下[12.5,15.5)3[15.5,18.5)8[18.5,21.5)9[21.5,24.5)11[24.5,27.5)10[27.5,30.5)5[30.5,33.5)4(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在15.5,24.5)的百分比是多少?解:组距为3分组频数频率频率/组距[12.5,15.5)3[15.5,18.5)8[18.5,21.5)9[21.5,24.5)11[24.5,27.5)10[27.5,30.5)5[30.5,33.5)40.060.160.180.220.200.100.080.0200.0530.0600.0730.0670.0330.027频率分布直方图如下:频率组距0.0100.0200.0300.0400.05012.515.50.0600.0701、求极差(即一组数据中最大值与最小值的差)知道这组数据的变动范围4.3-0.2=4.12、决定组距与组数(将数据分组)3、将数据分组(8.2取整,分为9组)小结:画频率分布直方图的步骤4、列出频率分布表.(填写频率/组距一栏)5、画出频率分布直方图。组距:指每个小组的两个端点的距离,组距组数:将数据分组,当数据在100个以内时,按数据多少常分5-12组。4.18.20.5极差组数=组距

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功