1.庄子:一尺之棰,日取其半,万世不竭。(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2009年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2009年的2倍?解:1.?21)1(4?125.021)2(xx?2%81xx这是已知底数和幂的值,求指数!你能看得出来吗?怎样求呢?2.a(1+8%)x=2a1.对数的定义:一般地,如果a(a0,a≠1)的b次幂等于N,二、新课那么就称b是以a为底N的对数,注:底数a的取值范围:)10(aa且真数N的取值范围:)0(NbNalog记作:Nab即:底数真数aNlog=b?)5(log)2(的取值范围是实数中,思考:在aaba051202aaa解:NabbNalog底数幂真数指数对数2.指数式与对数式的互化:探究:对数的性质⑴负数与零没有对数(在指数式中N0)⑵1logaaalog对任意0a且1a都有10a01logaaa11logaa),N,a,abN(在a010log中??01(1)常用对数:我们通常将以10为底的对数叫做常用对数。为了简便,N的常用对数N10log简记作:lgN。例如:5log10简记作:lg5;5.3log10简记作:lg3.5.(2)自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数。为了简便,N的自然对数Nelog简记作:lnN。例如:3loge简记作ln3;10loge简记作:ln103.两个重要对数:讲解范例例1将下列指数式写成对数式:(1)(4)(3)(2)3225532log22121121log2813xx81log3614xx61log4练习1.把下列指数式写成对数式:(1)(3)(2)82338log23127313131log27208.1xx2log08.1256128(4)82561log2讲解范例(1)(4)(3)(2)例2将下列对数式写成指数式:01.0102201.0lg12515331251log510303.2e303.210ln27313327log31练习(1)(4)(3)(2)2将下列对数式写成指数式:811344811log3125533125log54122241log293229log327log)1(9625log)3(345例3计算:,27log)1(9x设解:23,33,27932xxx 则 625log)3(345x设,625534x,55434x3x81log)2(3625log)3(5,81log)2(3x设4,33,8134xxx 则 ,625log)3(5x设4,55,62554xxx 则 27log)1(9变式:81log)2(43,27log)1(9x设解:3,339,27932xxxx 则 ,81log)2(43x设1644,3344xxx 则 注:对数恒等式babalog)1( )(探究:已知010,N,aa31log)4(aa232log)1(aa5log)2(aa3log)3(aa53181log)2(3625log)3(5例3计算:43log4345log453.对数恒等式:babalog)1( xabalog证明:设bxaabx,babalogNaNalog)2( xaNalog证明:设NxNxaa,loglogNaNalog32log)1(64x例4计算:68log)2(xxe2ln)3(1.求下列各式的值巩固练习(1)(4)(3)(2)100lg25log252121log211log503log313log311(5)(6)1loga0(7)aalog1(8)2.求下列各式的值练习(1)(4)(3)(2)1log5.009log91625log25210000lg464gol432log22(5)(6)思考:nmaaanm2.3log,2log求: 已知:12)(.3,22nmnmaaaa解:小结学习要求1.掌握指数式与对数式的互化.2.会由指数运算求简单的对数值.3.掌握对数恒等式及其应用.