量子散射理论

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、散射过程散射中心方向准直的均匀单能粒子由远处沿z轴方向射向靶粒子,受靶粒子的作用朝各方向散射。散射角弹性散射、非弹性散射、反应(非弹性兴散射)§1散射现象第4章量子散射理论两题问题折合(约化质量)相互作用势散射)(rV二、定态散射)(rVV散射势与时间无关弹性散射,入射粒子动量pEttrie|),(|||ˆEH)(2ˆˆ2rVpH222Ek)()()()(22rrUrk)(2)(2rVrU波矢量k|)(rrr0)(rV较更快趋于零,短程势r1022kr0ˆ22222rLkr0222krrr0222krkrfrie),(),,(krfrie),(),,(向外传播的球面散射波向散射中心会聚的球面波rfeArkkrrkriie),(),(入射平面波渐进解散射球面波沿z轴方向入射21iie),(e),(rfArkkrkz),(f散射振幅三、散射截面单位时间内散射到(,)方向d内的粒子数2dddrsΩnd),(dNn单位时间内通过与粒子运动方向垂直的单位面积的粒子数,亦称入射粒子流强度,NNndΩNndd2dd][LNn具有面积的量纲微分散射截面,简称截面或角分布dd),(Nn(,)与入射粒子和靶粒子(散射场)的性质,它们之间的相互作用,以及入射粒子的动能有关,是,的函数。如果在垂直于入射方向取面积(,),则单位时间内通过截面(,)的粒子数恰好散射到(,)方向的单位立体角内。总散射截面:ddsin),(d),(π0π20Ωtdd),(Nn入射粒子流密度zzJeJJ0v22||||AkA21iie),(e),(rfArkkrkz)ii(2i2i*1*111*1*11kkzzN散射波的几率流密度2222*2*22|),(|||2ifrArrJsvsfrAsJnsd|),(|||dd222vΩfAd|),(|||22v2|),(|),(f散射振幅的模方§2李普曼-许温格方程Lippmann-SchwingerEquationLS方程一、弹性散射的定态薛定谔方程)()()()(22rrUrk)(2)(2rVrUrfeArkkrkzriie),(),(边界条件格林函数法)()()(20222rrrrGk0)()(2222rk自由解,平面波rrrVrrkGrrd)()(),()()(20Lippmann-SchwingerEquation等价于:定态薛定谔方程“+”边界条件微分方程积分方程求格林函数!!傅里叶变换krkgrrkGrkde),()π2(1),(i320krrrrkde)π2(1)()(i3)()()(20222rrrrGkkkrkgkkrrkrkde)π2(1de),()(2)π2(1)(i3i2223rkkkrkgi222e12),(kkkdddsind2kkkrrkGrrkde12)π2(1),()(i2223200222220)d||sin(||2π21),(krrkkkkrrrrkGcos||i)(ieerrkrrk两个奇点kk记rrR||||rrRRkkkkRrrkGRkde2π4i),(i2222200222220)d||sin(||2π21),(krrkkkkrrrrkGkkkkkRRkd)e11(2π8ii22kRekIm),(20RkG),(2)(0RkG出射格林函数kRRRkGi22)(0e2π41),(kRekIm),(2)(0RkG入射格林函数kRRRkGi22)(0e2π41),(kRRRkGi22)(0e2π41),(kRRRkGi22)(0e2π41),(||i22)(0e||1π2),(rrkrrRkG还可以取其他回路,结果与上面两种不独立,是其线性组合。另一处理方式kRekImikkkRekImikkikkikkkkkrrkGrrkde12)π2(1),()(i222320222EkkEErrkde1)π2(1)(i3kEErrkGrrkdei1)π2(1lim),()(i302)(0||i22)(0e||1π2),(rrkrrRkGrferkkrkzrii23)(e),()π2(),(23)π2(1ArrrVrrkGrrd)()(),()()(20rrrVrrkGrfkrd)()(),(e),()π2()(2)(0i23rrrVrrrrkd)()(e||1π2)(||i22122)2(||rrrrrrrnrrrrnrrrVrrfrnrkkrd)()(e1π2e),()π2()()(i2i23rrrVfrnkd)()(eπ2)π2(),()(i223rrrVfrkfd)()(eπ2)π2(),()(i223nkkfffkp出射(末态)动量弹性散射kkkfirkffki23e)π2(|动量本征态)(22||2π2),(ikfVkf末初跃迁rferkkrkzrii23)(e),()π2(),(rferkkrkzrii23)(e),()π2(),(不是散射问题的解!rrrVrkfd)()(eπ2)π2()(i223二、李普曼-许温格方程薛定谔绘景、弹性散射222022ˆˆpH||)ˆ(0EVH||)ˆ(0VHE记kEkH||ˆ0222kE||)ˆ(|)ˆ(00VkHEHE)ˆ(0HE记的逆算符iˆ1ˆ0)(0HEG10)(0)(|iˆ||HEVkLS方程)(0)(|iˆ||HEVk坐标表象)(0)(|iˆ|||HEVrkrrrrrVrrkGrrd)()(),()()(20)(rrrHEVrkrd||iˆ||)(0krkkHErrHErd||iˆ1||iˆ1|00krkEEkrd|i1|kEErrkdei1)π2(1)(i3),(2)(0rrkG正是前面给出的LS方程iˆ1ˆ0)(0HEGkHEkG|iˆ1|ˆ0)(0kEE|i1自由格林算符)(i1|ˆ|)(0kkEEkGk表象中为对角矩阵0ˆH)(0ˆG)(0ˆG和互为厄米共轭表象中的LS方程Hˆ)(0)(|iˆ||HEVkkHEVHE|)iˆ(||)iˆ(0)()(0ffkpiikp||||fippiippkHEVHEii|)iˆ(||)iˆ(0)()(0iippkHEVHEii|)iˆ(||)iˆ(0)()(0VHH0ˆˆiiipkVkHEHEi||)iˆ(|)iˆ()(iiipkHEVki|iˆ||)(iˆ1)(ˆ)(HEEGii全格林算符iipkVGki|ˆ||)()(全格林算符下的LS方程三、戴森方程DysonEquation散射波)()()(rrrs0)()(2222rk0)()]([2222rrUk)(2)(2rVrU0)()(2222rk0)()]([2222rrUk)()()(rrrs)()()]([2222rVrrUks格林函数法)(),()]([22222rrrrkGrUk解记为),(2)(rrkGrrrVrrkGrsd)()(),()(2)()()()()()()(rrrs算符形式|ˆ||)()(VG坐标表象的全格林算符下的LS方程由于ik||),()(),(][22)(2)(222rrkVGrrrrkGk可用求解),(2)(0rrkGrrrkGrVrrkGrrkGrrkGd),()(),(),(),(2)(2)(02)(02)(rrrkGrVrrkGrrkGrrkGd),()(),(),(),(2)(2)(02)(02)(算符形式)(ˆ)(ˆ)(ˆ)(ˆ)()(0)(0)(EGVEGEGEG全格林算符的LS方程Dyson方程迭代法求解)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(0)(0)(0)(0)(0)(0)(EGVEGVEGEGVEGEGEG四、算符与算符TˆSˆrferkkrrkriii23e),()π2(),(rrkrVfirkfd),()(eπ2)π2(),()(i223)(22||π4ikfVk定义:)()(||ˆikiVkT)(22||π4),(ikfVkf)()(||ˆikiVkTifkTk|ˆ|π4)(22)(22π4fiTiffikTkT|ˆ|)()(跃迁矩阵元Tˆ跃迁算符2|),(|),(f2)(424||π)2(fiT

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功