243Vol.24No.320156OPERATIONSRESEARCHANDMANAGEMENTSCIENCEJun.20152013-10-097123100371171055708711172012J0128022015J01287JA14295201311311023。1986-1965-。1211.3650042.350108。。C934A1007-3221201503-0120-07Variable-weightBasedMethodforIntuitionisticTriangularFuzzyDecisionMakingYUGao-feng1LIDeng-feng2QIUJin-ming1.SchoolofInformationSanmingUniversitySanming365004China2.SchoolofManagementFuzhouUniversityFuzhou350108ChinaAbstractFormulti-attributedecisionmakingproblemswheretheattributevaluesareintuitionistictriangularfuzzynumbersanewdecisionmakingmethodisdevelopedonthebasisofvariable-weightvector.Firstlytheconceptoftriangularintuitionisticfuzzynumbersisintroducedandanewrankingmethodoftriangularintuition-isticfuzzynumbersispresented.Secondlythetriangularintuitionisticfuzzyvariable-weightweightedaveragingoperatorandtriangularintuitionisticfuzzyvariable-weightweightedgeometricaveragingoperatorareproposed.Thenamethodformultipleattributedecisionmakingbasedontriangularintuitionisticfuzzyvariable-weightaggregationoperatorsisdeveloped.Finallyanillustrativeexampleshowstheeffectivenessoftheproposedapproach.Keywordsvariable-weightvectortriangularintuitionisticfuzzynumberdecisionmakingaggregationoperators0Atanassov121986、。3~5。6。7。8~10。1112、、。1314、、、。1516。17。18Vague。19LINMAP。20。21、。22。。。80。20~27。。1x=x1x2…xmIm=x1x2…xmT|0≤xj≤1RmI+mImp=p1p2…pmq=q1q2…qm0=00…0mωx=ω1xω2x…ωmxm。a≥bab。127p∈Imωx∈C1I+m.ω1ωx≥02eTωx=13j∈12...mωjxj≤0xj<pj≥0xj>p{j4vx=xTωx。ωxppωx。22.12珘αμ珘αx=w珘αx-aa-aa≤x<aw珘αx=aw珘α珔a-x珔a-aa<x≤珔a0x<ax>珔av珔ax=a-x+uax-aa-aa≤x<au珔ax=ax-a+uax-a珔a-aa<x≤珔a1x<ax>珔a0≤w珘a≤10≤μ珘a≤10≤w珘a+μ珘a≤1珘a=〈aa珔aw珘aμ珘a〉TIFNw珘aμ珘aπ珘a=1-w珘a-μ珘a珘a12131。1珘a=<aa珔aw珘aμ珘a>a≥0珔a>0珘a=〈aa珔aw珘aμ珘a〉珘a>0。珔a≤0a<0珘a=〈aa珔aw珘aμ珘a〉珘a<0。珘a=〈aa珔aw珘aμ珘a〉a。珘aa珔a。珘aaw珘au珘a珘aa珔a01a珔axw珘axu珘ax。w珘a=1u珘a=0TIFNTFN。3珘a=〈aa珔aw珘aμ珘a〉0≤w珘a≤10≤μ珘a≤10≤w珘a+μ珘a≤10≤a≤a≤珔a≤1珘a珘a+=〈a+a+珔a+w珘a+u珘a+〉=〈11110〉珘a-=〈a-a-珔a-w珘a-u珘a-〉=〈00001〉珘a1=〈a1a1珔a1w珘a1u珘a1〉珘a2=〈a2a2珔a2w珘a2u珘a2〉λ珘a1+珘a2=〈a1+a2a1+a2珔a1+珔a2w珘a1^w珘a2u珘a1ˇu珘a2〉珘a1珘a2=〈a1a2a1a2珔a1珔a2w珘a1^w珘a2u珘a1ˇu珘a2〉λ珘a1=〈λa1λa1λ珔a1w珘a1u珘a1〉珘aλ1=〈aλ1aλ1珔aλ1w珘a1u珘a1〉。2。4珘a=〈aa珔aw珘au珘a〉0≤α≤w珘a珘aα=x|μ珘a≥α珘aα。珘aα=L珘aαR珘aα。L珘aαR珘aα=w珘a-αa+αaw珘aw珘a-α珔a+αaw珘a5珘a=〈aa珔aw珘au珘a〉u珘a≤β≤1。珘aβ=x|υ珘ax≤β珘aβ。珘aβ=L珘aβR珘aβ。L珘aβR珘aβ=1-βa+β-u珘aa1-u珘a1-βa+β-u珘a珔a1-u珘a6珘a=〈aa珔aw珘au珘a〉E珘a珘a。E珘a=∫w珘a012a+珔a+2a-a-珔aαw珘aαdα+∫1u珘a12a+珔a+2a-a-珔a1-β1-u珘a1-βdβ=2a+a+珔aw2珘a+1-u珘a2617珘a=〈aa珔aw珘au珘a〉LG珘a珘aLG珘a=E珘aw珘a+λ1-w珘a-u珘a22λ∈01λ。λ>0.5λ<0.5λ=0.5λ=0.5。珘a1珘a21LG珘a1>LG珘a2珘a1>珘a22LG珘a1=LG珘a2珘a1=珘a23LG珘a1≥LG珘a2珘a≥1珘a2。、。22120152471珘a珓bw珘a=w珓bu珘a=u珓bE珘a+珓b=E珘a+E珓bLG珘a+珓b=LG珘a+LG珓b。2珘a珓bw珘a=w珓bu珘a=u珓b。a>珋b珘a>珓b。3珘a珓b珓cw珘a=w珓bu珘a=u珓ba>珋b珘a+珓c>珓b+珓c。4珘a珓ba=ba=b珔a=珋bw珘a>w珓bu珘a<u珓b珘a>珓b。121~4。2~4珘a珓b珘a珓b珘a>珓b珘a珓b珘a>珓b珘a珓c珓b珓c珘a珓b珘a珓b珘a珘a>珓b。珘a、珓b珓cWang281珘a≥珘a2珘a≥珓b珓b≥珘a珘a=珓b3珘a≥珓b珓b≥珓c珘a≥珓c。2.28珘aii=12…nE珘aiTIFN-VWAAIn→I。TIFN-WAA珘a1珘a2…珘an=∑ni=1wiE珘a珘ai3ITIFNwE珘apE珘a=E珘a1…E珘an0≤wiE珘a≤1i=12…n∑ni=1wiE珘a=1TIFN-VWAAnTIFN。p=0wE珘ap=ewE珘ap∈01nwE珘awE珘a。9珘aii=12…nE珘aiTIFN-VW-GAIn→I。TIFN-WGA珘a1珘a2…珘an=∑ni=1珘aiwiE珘a4TIFN-WGAnTIFN。p=0wE珘ap=ewE珘ap∈01nwE珘awE珘a。3213。。1珘aii=12…n5TIFN-WAA珘a1珘a2…珘an=〈∑ni=1wiE珘aai∑ni=1wiE珘aai∑ni=1wiE珘a珔aiw珘a1w珘a2…w珘anu珘a1u珘a2…u珘an〉。2珘a2i=12…n6TIFN-WGA珘a1珘a2…珘an=〈∑ni=1aiwiE珘a∑ni=1aiwiE珘a∑ni=1珔aiwiE珘aw珘a1w珘a2…w珘anu珘a1u珘a2…u珘an〉。1212。2.3X=x1x2…xng=g1g2…gmw0=w01w02…w0mTw0j∈01j=12…m∑mj=1w0j=1。槇A=珘aijn×m珘aij=〈aijaij珔aijw珘aiju珘aij〉xigiaij≤aij≤珔aijw珘aij∈01μ珘aij∈01i=12…nj=12…m。xii=12…nmai=珘a1i珘a2i…珘ami。Step1、、A=珘aijn×m珘aij=〈aijaij珔aijw珘aiju珘aij〉。Step2珓rij=〈rijrij珋rijw珘aiju珘aij〉珓rij=〈1-珘aij珔a+j1-aij珔a+j1-aij珔a+jw珘aiju珘aij〉5珓rij=〈aij珔a+jaij珔a+j珔aij珔a+jw珘aiju珘aij〉6珘a+j=max珘aij|i=12…nj=12…m。Step3。1E珓rij=rij+2rij+珋rijw2珘aij+1-u珘aij26Step4。Step5。56xii=12…n。Step6。2xii=12…nxii=12…n。33.113x1、x2x3。5g1、g2、g3、g4、g5w=0.140.30.120.30.14T。1。4212015241g1g2g3g4g5x1〈5.77.79.30.70.2〉〈5790.60.3〉〈5.77.790.80.1〉〈8.339.67100.60.4〉〈3570.60.3〉x2〈6.58.6100.70.2〉〈89100.60.3〉〈8.39.7100.80.1〉〈89100.60.3〉〈79100.60.2〉x3〈6.58.6100.80.1〉〈79100.70.2〉〈09100.50.2〉〈6890.60.2〉〈6.38.39.70.70.2〉16。2。2g1g2g3g4g5x1〈0.0830.1110.1340.70.2〉〈0.150.210.270.60.3〉〈0.0680.0920.1080.80.1〉〈0.2490.2910.30.60.4〉〈0.0420.070.0980.60.3〉x2〈0.0910.120.140.40.5〉〈0.240.270.300.60.3〉〈0.100.1160.120.70.2〉〈0.240.270.300.60.3〉〈0.0980.1260.140.60.2〉x3〈0.0910.1150.130.80.1〉〈0.210.270.30.70.2〉〈0.0840.1080.120.50.2〉〈0.180.240.270.60.2〉〈0.0880.1160.1360.70.2〉205ut=16t3-14t2+1312t25~26wijErijErijErij=w0j12Erij2-12Erij+136∑5k=1w0k12Erik2-12Erik+136i=123j=12…533。44。3x1x2x3TIFN-VWAA〈0.1450.1860.2160.60.4〉〈0.1820.2100.2330.40.5〉〈0.1520.1980.2220.50.2〉TIFN-VWGA〈3.2933.4903.6130.60.4〉〈3.4963.6113.6850.40.5〉〈3.3903.5683.6520.50.2〉〈0.5920.7740.9100.60.4〉〈0.7690.9031.0000.40.5〉〈0.6530.8490.9560.50.2〉4x1x2x3TIFN-VWAA0.0260.0130.037x3>x1>x2TIFN-VWGA0.5000.2210.683x3>x1>x20.1100.0550.159x3>x1>x23.25ρ1=0.333ρ2=0.526ρ3=0.671。x3>x1>x2x3x3。TIFN-VWAA。0.5TIFN-VWAA。521341。234。1AtanassovKT.IntuitionisticfuzzysetsJ.FuzzySetsandSystems198620187-96.2AtanassovKTGargovGIntervalvaluedintuitionisticfuzzysetsJ.FuzzySetsandSystems198931343-349.3LiDFNanJXZhangM