2012-09-102012-12-182013-03-05510690041972-、。http//.cnki.net/kcms/detail/61.1450.TP.20130305.0816.023.htmlK-means李四海1,满自斌2(1.甘肃中医学院,甘肃兰州730000;2.兰州理工大学,甘肃兰州730050)K-meansK-meansAFW-K-means。、UCIBCW。K-means。K-meansTP181A1673-629X201306-0098-04doi10.3969/j.issn.1673-629X.2013.06.025K-meansClusteringAlgorithmBasedonAdaptiveFeatureWeightedLISi-hai1MANZi-bin21.GansuCollegeofTraditionalChineseMedicineLanzhou730000China2.LanzhouUniversityofTechnologyLanzhou730050ChinaAbstractInordertoimprovetheaccuracyandstabilityoftraditionalK-meansalgorithmonmedicaldataclusteringproposedanadap-tivefeatureweightedK-meansclusteringalgorithmnamedAFW-K-means.Firstlyinitialclusteringcenterwaschosenbycalculatingmeansquaredeviationoffeatureattribute.Thenaccordingtotheresultsofeachiterationthefeatureattributeweightindistanceformulaismodifiedbasedontheprincipleofminimum-in-cluster-distanceandmaximum-between-cluster-distancewhichcanreflectthetruedistanceamongthedatapointsintheEuclideanspace.FinallythevalidityoftheproposedapproachisdemonstratedbytheexperimentofUCIdatasetsuchasBreastCancerWisconsindataset.TheresultsshowedthatthealgorithmhashigherprecisionofpredictionandbetterstabilitythantraditionalK-meansalgorithm.KeywordsK-meansmedicaldataclusteringAFWclusterevaluationconfusionmatrix0!。、、、、12。K-means、。。3~6。7。。Fisher89、10、。K-means。23620136COMPUTERTECHNOLOGYANDDEVELOPMENTVol.23No.6June2013。11。UCIK-means。1K-meansnkk。K-meansankbcdbc。K-meansdmn=∑mj=1xmj-xnj槡21。2K-means2.11nmX=x11x12…x1mx21x22…x2m…………xn1xn2…xnm0.011。2nKn1n2…nkKjdn=∑Kk=1∑nki=1xij-mkj22mkjkj。3Kjdw=∑Kk=1mkj-mj23mjj。4jcj=dw/dn4、。。2.2jwj=cj/∑mj=1cjwj∈01∑mj=1wj=151dmn=∑mj=1wjxmj-xnj槡26。。wj。2.3K-means。。K-means。K。、。2.4AFW-K-meansnmnm·99·6K-meanskk。1meanv1m。2CC=mean±2vk-1×jj=1…k/2∪meankmean±2vk×jj=12…k/2k{2v/k2v/k-1。3wj=1/mj=12…m4。。50。。6、。746。33.1。。、。K-means。、VDVI。C1C2…CkP1P2…Pkn11n12…n1kn21n22…n2k…………nk1nk2…nkkP1P2…PkkC1C2…Ck。。VDVI12VD=2n-∑imaxjnij-∑jmaxinij/2nVI=-∑ipilogpi-∑jpjlogpj-2∑i∑jpijlogpij/pipjK-means。VI。3.2MatlabR2010bK-meansK-means8。UCIIris。4petallengthpetalwidth。K-means107.3K-means54。Iris1图1Iris特征权重调整曲线1petallengthpetalwidth0.250.44840.4769。、。BreastCancerWis-consinBCW10、、、、、、、、BbenignMma-lignant。K-means85.41%7·001·231。35762123293.32%。。表1BCW数据集聚类结果BMB3516M32180BCWVDVI2表2BCW数据集VD和VI比较K-meansK-meansVD0.14590.07910.0668VI0.92640.75790.6516VDVI。2VD、VI。VD=1-VD。。UCI4102K-means。图2不同算法在4个数据集上的迭代次数2K-means。。K-means。UCI10103K-means10。表3不同K-means聚类算法的测试结果对比K-means%K-means%%Iris89.339696image51.3465.1963.98Wine87.9691.0192.13Breast85.4192.0993.32Balance_scale48.0047.0454.88lonosphere71.2370.6672.36Vehicle36.2937.5944.21Haberman50.0050.6550.65Waveform49.7650.0850.22Pima67.0667.0667.89Breast、HabermanPimaK-means。K-meansBal-ance_scaleVehicleK-meansK-meansK-meansBalance_scale0.25K-means。。4。K-means。1.J.(下转第105页)·101·6K-meansHQA。HQA、、13~15。。。。1.M.2.2005.2.FlowShopJ.200729793-95.3.J.2008272188-191.4.WebJ.201222339-43.5.J.200626122956-2960.6.J.2006345897-901.7.J.2010325150-155.8.JobShopJ.200945301077-1079.9.J.20114781235-1237.10.GAJ.201147131066-1069.11.J.201132355-58.12TuZhenguoLuYong.ARobustStochastieGeneticAlgorithmstGAforGlobalNumericalOptimizationJ.IEEETrans-actionsonEvolutionaryComputation200485456-470.13TalbiHDraaABatoucheM.ANewQuantum-inspiredGe-neticAlgorithmforSolvingtheTravelingSalesmanProblemC//2004IEEEInternationalConferenceonIndustrialTechnology.s.l.s.n.20048-10.14YuanBoGallagherM.OntheImportanceofDiversityMainte-nanceinEstimationofDistributionAlgorithmsC//Proceed-ingsofthe2005GeneticandEvolutionaryComputationCon-ference.WashingtonDCACM2005719-726.15LiPCLiSY.Quantum-inspiredevolutionaryalgorithmforcontinuousspaceoptimizationbasedonblochcoordinatesofqubitsJ.Neuroeomputing2008721-3581-591.檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪(上接第101页)200819148-61.2.D.2011.3.K-meansJ.200733365-66.4.K-meansJ.201121262-65.5XuJunlingXuBaowenZhangWeifeng.StableInitializationSchemeforK-meansClusteringJ.WuhanUniversityJour-nalofNaturalSciences200914124-28.6KangPChoS.K-meansclusteringseedsinitializationbasedoncentralitysparsityandisotropyC//Proceedingsofthe10thInternationalConferenceonIntelligentDataEngineeringandAutomatedLearning.BerlinSpringer2009109-117.7.K-J.2003406869-873.8ModhaDSSpanglerWS.FeatureWeightinginK-meansClusteringJ.MachineLearning2003523217-237.9.FisherK-meansJ.201027124439-4442.10.K-meansJ.20113161675-1677.11TsaiCYChiuCC.Developingafeatureweightself-adjust-mentmechanismforaK-meansclusteringalgorithmJ.ComputationalStatistics&DataAnalysis200852104658-4672.12WuJunjieXiongHuiChenJian.AdaptingtheRightMeasuresforK-meansClusteringC//ProceedingsofThe15thACMSIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMiningKDD2009.Pariss.n.2009877-886.·501·6