第十二章--全等三角形知识点及练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.-2-ABECD(第5题)ABCDE(第4题)ACFEDAODBC(第1题)ABFEDC(第6题)(第7题)第1课时全等三角形一、选择题1.如图,已知△ABC≌△DCB,且AB=DC,则∠DBC等于()A.∠AB.∠DCBC.∠ABCD.∠ACB2.已知△ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则EF的长为()A.3B.4C.5D.6二、填空题3.已知△ABC≌△DEF,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝.4.如图,△ABC绕点A旋转180°得到△AED,则DE与BC的位置关系是___________,数量关系是___________.三、解答题5.把△ABC绕点A逆时针旋转,边AB旋转到AD,得到△ADE,用符号“≌”表示图中与△ABC全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC沿BC方向平移,得到△DEF.求证:AC∥DF。7.如图,△ACF≌△ADE,AD=9,AE=4,求DF的长.-3-ADBC(第2题)AFECDB(第3题)ABC(第4题)第2课时三角形全等的条件(1)一、选择题1.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于()A.73B.3C.4D.5二、填空题2.如图,已知AC=DB,要使△ABC≌△DCB,还需知道的一个条件是________.3.已知AC=FD,BC=ED,点B,D,C,E在一条直线上,要利用“SSS”,还需添加条件___________,得△ACB≌△_______.4.如图△ABC中,AB=AC,现想利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线应是_____________________.二、解答题5.如图,A,E,C,F在同一条直线上,AB=FD,BC=DE,AE=FC.求证:△ABC≌△FDE.6.如图,AB=AC,BD=CD,那么∠B与∠C是否相等?为什么?7.如图,AB=AC,AD=AE,CD=BE.求证:∠DAB=∠EAC.DCEFBA(第5题)(第6题)ABCDDCEBA(第7题)-4-ACDBEF(第2题)ABEDC(第1题)ABCED(第6题)第3课时三角形全等的条件(2)一、填空题1.如图,AB=AC,如果根据“SAS”使△ABE≌△ACD,那么需添加条件________________.2.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等三角形有_____________对.3.下列命题:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的命题有_____________.二、解答题4.已知:如图,C是AB的中点,AD∥CE,AD=CE.求证:△ADC≌△CEB.5.如图,A,C,D,B在同一条直线上,AE=BF,AD=BC,AE∥BF.求证:FD∥EC.6.已知:如图,AC⊥BD,BC=CE,AC=DC.求证:∠B+∠D=90°;(第4题)ABCDEDCFBAE(第5题)-5-ABCDOAECBDEDCBA第4课时三角形全等的条件(3)一、选择题1.下列说法正确的是()A.有三个角对应相等的两个三角形全等B.有一个角和两条边对应相等的两个三角形全等C.有两个角和它们夹边对应相等的两个三角形全等D.面积相等的两个三角形全等二、填空题2.如图,∠B=∠DEF,BC=EF,要证△ABC≌△DEF,(1)若以“SAS”为依据,还缺条件;(2)若以“ASA”为依据,还缺条件.3.如图,在△ABC中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE=.三、解答题4.已知:如图,AB∥CD,OA=OC.求证:OB=OD5.已知:如图,AC⊥CE,AC=CE,∠ABC=∠CDE=90°,求证:BD=AB+ED6.已知:如图,AB=AD,BO=DO,求证:AE=ACOEADBC(第6题)(第5题)ABFEDC(第2题)(第3题)-6-3421EDCBAADBCoABEDCF(第3题)(第5题)(第4题)第5课时三角形全等的条件(4)一、选择题1.已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙二、填空题2.如图,已知∠A=∠D,∠ABC=∠DCB,AB=6,则DC=.3.如图,已知∠A=∠C,BE∥DF,若要用“AAS”证△ABE≌△CDF,则还需添加的一个条件是.(只要填一个即可)三、解答题4.已知:如图,AB=CD,AC=BD,写出图中所有全等三角形,并注明理由.5.如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BEDCBA(第2题)

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功