AdvancesinEnvironmentalProtection,2017,7(6),465-475PublishedOnlineDecember2017inHans.://doi.org/10.12677/aep.2017.76060:,,,.[J].,2017,7(6):465-475.DOI:10.12677/aep.2017.76060ThePerformanceandCarbonSequestrationoftheBiocharConcreteDannelZhang1,XianHuang1,ZhenhongWang1,YansenHuang21CollegeofLifeScience,GuizhouUniversity,GuiyangGuizhou2GuizhouLianjianCivilEngineeringQualityTestingMonitoringCenterCo.Ltd.,GuiyangGuizhouReceived:Nov.15th,2017;accepted:Nov.30th,2017;published:Dec.8th,2017AbstractCarbonsequestrationisakeytechniquemitigatingtheglobalwarming.Weusedbiochartore-placecementtomakethebiocharconcreteinconcreteproduction,andthencomparedtheper-formanceandcarbonsequestrationofthebiocharconcretewithC20concrete.When1%ofce-mentwasreplacedbybiochar,thestrengthofthebiocharconcreteincreasedby9.77%comparedwiththecontrol;When5%ofcementwasreplacedbybiochar,thestrengthofthebiocharcon-cretewassimilartothecontrol;When6%~30%ofcementwasreplacedbybiochar,thestrengthofthebiocharconcretedecreasedcomparedwiththecontrol,butthebiocharconcretestillmetthenationalstandardsoftheC20concretefortheconcretestrength.Theadditionofwaterfortheproductionofthebiocharconcreteandthesaturationwatercontentsofthebiocharconcretein-creasedwithincreasingamountofbiocharintheconcrete,butslumpconstantandtheapparentdensityofthebiocharconcretedecreased.IfthebiocharconcretethathavemetthedemandofthestrengthoftheC20,C25andC30concreteisappliedtoallconstructingbuildingsinChina,thesebuildingswillbeabletosequestrate4.951010kgCO2;Ifthebiocharconcreteisappliedforim-provementinstructuresandfunctionsoftheexistingbuildings,theseexistingbuildingswillbeabletosequestrate1.731012kgCO2.ThetotalsequestrationofCO2bytheapplicationofthebiocharconcreteequalsto1.5ofthestandardforestareainChina.Biocharusedtoreplacece-mentinconcreteproductionisaninnovativemethodofcarbonsequestration.Thebiocharcon-cretehastheadvantagesofeasyoperation,lowcost,andlong-timesequestrationofcarbon,andtheproductionofthebiocharconcretecanconsumeagreatamountofsolidwastes.KeywordsCarbonSequestration,Biochar,BiocharConcrete,AbsorptionRatio,QuantityofCarbonSequestration,StandardForest1112DOI:10.12677/aep.2017.760604661220171115201711302017128C201%9.77%5%6%~30%C20C20C25C304.951010kgCO21.731012kgCO21.5Copyright?2017byauthorsandHansPublishersInc.ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY).(700)[1][2][3][4][4][5][6][7][8][9][10][11][12][13]CO2[9][12][10][13][9][12][13][11]OpenAccessDOI:10.12677/aep.2017.76060467[11][13][14][15][16][17]1)2)3)2.2.1.1P.O42.512.2.(JGJ55-2011)[17][18]C20fcu,k=20.0MPafcu,o=26.58MPa10-20mm40%{/(+)}W/C=0.572895%[5][6][7]:::=1:3.16:4.36:0.5701%5%10%15%20%25%30%2128122.3.2.3.1.(GB/T50081-2002)[19](GB/T50080-2002)[20]:::=1:3.16:4.36:0.5729.23kg40.32kg5.13kg9.00kg1min5min2530s(20295%28)2328228DOI:10.12677/aep.2017.76060468Figure1.Materialsfortesting1.Table1.Thebasicpropertyofexperimentalmaterials1.Biochar(g/cm3)pHMgO(%)CaO(%)ZnO(%)CuO(%)Al2O3(%)1.567.561.5510.010.00630.01050.76Cement(g/cm3)(%)(min)(min)3.10115.6357245316Coarseandfineaggregates(g/cm3)(g/cm3)(mm)2.781.813.50-4.752.791.43-5-20DOI:10.12677/aep.2017.76060469Figure2.Maintestinstruments2.2.3.2.9.74kg13.44kg1.71kg3.00kg1min5minHi(i=0,1,5,10,15,20,25,30)(1)[19][20]()0,1,5,10,15,20,25,30iLHHi=-=(1)L(mm)H(mm)Hi(mm)2.3.3.(GB/T50080-2002)[20]2.3.4.(GB/T50080-2002)[20]5LM1M2i(i=0,1,5,10,15,20,25,30)(2)[19][20]()()2110000,1,5,10,15,20,25,30iMMiV-==(2)(kg/m3)2iM(kg)1M(kg)V(L)DOI:10.12677/aep.2017.760604702.3.5.1.3.1M0i(i=0,1,5,10,15,20,25,30)3h3h(3)[7]()()100100%0,1,5,10,15,20,25,30iiiMMRiM-==(3)RM0i(kg)M1i(kg)2.3.6.[19]0.273CsM=??(4)0.3MS=?(5)10.2730.1160SsCs(6)Cs(kg)1/9.09(%)M(kg)0.2730.3(m3/m2)S(m2)(kg/m3)Ss(m2)1160(m2/kg)0.1(3)Figure3.Testflowchart3.DOI:10.12677/aep.2017.760604713.3.1.[7]21%5%5%30%C205%2828282823.2.[6]414mm2mm()20.3713.040.98yxR=-+=3.3.300.55kg0%~1.97%Table2.Thestrengthofthebiocharconcretewithdifferentbiocharsubstitutionsafterthe28daysstandardcuringandthestrengthofthewater-saturatedbiocharconcretewithdifferentbiocharsubstitutionsafterthe28daysstandardcuring2.2828(%)28(MPa)28(MPa)033.630.15(b)*31.530.32(b)137.270.72(a)33.670.12(a)532.070.15(b)31.030.32(b)1026.730.15(cd)26.030.09(c)1527.930.18(c)26.570.30(c)2027.130.03(cd)26.230.3(c)2525.630.80(d)22.330.12(d)3022.200.06(e)20.430.26(e)*0.95DOI:10.12677/aep.2017.76060472Figure4.Therelationshipbetweentheamountofbiocharsubstitutionsandslumpconstantsofthebiocharconcrete4.Table3.Therelationshipbetweenthebiocharsubstitutionsandthewatersupplementratiounderthedefinedslumpcon-stantsandwatercementratios3.(%)(mm)(kg)013.81.180.000.00113.21.050.100.01513.50.800.250.011013.00.790.310.021513.40.840.380.022013.51.100.400.032513.41.150.500.063013.00.950.550.053.4.50%~30%2.6g/m32.4g/m30.00642.62yx=-+()20.95R=3.5.6DOI:10.12677/aep.2017.76060473Figure5.Therelationshipbetweenbiocharsubstitutionsandtheapparentdensityofthebiochar-concrete5.Figure6.Therelationshipbetweentheamou