2018-2019学年第一学期期中质量检测八年级数学试题(2018.11)满分:150分时间:120分钟第I卷(选择题共48分)注意事项:第I卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号。一、选择题(本大题共12个小题,每小题4分,共48分。在每小题给出的四个选项中,只有一项是符合题目要求的)。1.64的立方根是()A.4B.±4C.8D.±82.下列各数3,0.2020020002…(相邻两个2之间0的个数逐次加1),38,3.14,0,2,2,其中无理数有()3A.1个B.2个C.3个D.4个3.估计15的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.以下列各组数为线段长,不能构成直角三角形的一组是()A.1,2,5B.3,4,5C.1,2,3D.6,8,125.点P为第三象限的点,P到x轴的距离是2,到y轴的距离是5,那么P点坐标是()A.(-2,-5)B.(-5,-2)C.(-5,2)D.(5,-2)6.下列各式中计算正确的是()23(2)2D.3(1A.(9)9B.255C.)127.点A(-1,m),B(3,n)在如图所示的一次函数ykxb的图像上,则()A.m=nB.m>nC.m<nD.m、n的大小关系不能确定第1页8.已知方程组2xy1的解满足xy2,则k的值是()x2yk2A.k=-1B.k=1C.k=3D.k=59.已知正比例函数y=kx(k≠0),y随x的增大而减小,则一次函数y=kx-k的图象大致是如图中的()A.B.C.D.10.如图,方格纸中每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()A.22B.3C.7D.1011.如图,在一个大长方形中放入六个形状、大小相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是()A.16B.44C.96D.14012.济南市某储运部紧急调拨一批物资,调进物资共用6小时,调进物资3小时后开始调出物资(调进物资与调出物资的速度均保持不变),储运部库存物资S(吨)与t时间(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.6.2小时B.6.4小时C.6.6小时D.6.8小时第I卷(非选择题共102分)注意事项:填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。二、填空题(每小题4分,一共24分)13.|5-3|=14.已知a1(b3)20,则M(a,b)点的坐标为15.已知点P(a,b)与点Q(2,3)关于x轴对称,则a-b=第2页16.如图所示,一只蚂蚁在正方体的一个顶点A处,它能爬到顶点B处寻找食物,若这个正方体的棱长为1,则这只蚂蚁所爬行的最短路程为17.如图,数轴上表示2和5的对应点分别为C,B,点C是AB的中点,则点A表示的数是18.如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为第16题图第17题图第18题图三、解答题(共计78分)19.计算(每题5分,共15分)(1)20.解下列二元一次方程组(每题5分,共10分)112272(2)(3)486(223)75334x3y12x3y4(1)(2)yx15x2y2921.(6分)如图,Rt△ABC中,∠C=90°,D为AC边上一点,连接BD,将△ABC沿BD折叠,顶点C恰好落在边AB上的点E处,若AC=2,BC=1,求CD的长。第3页22.(7分)温度与我们的生活息息相关,如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉),设摄氏温度为x(℃),华氏温度为y(℉),则y是x的一次函数,通过观察我们发现,温度计上的摄氏温度为0℃时,华氏温度为32℉;摄氏温度为-20℃时,华氏温度为-4℉;请根据以上信息,解答下列问题:(1)仔细观察图中数据,试求出y与x之间的函数表达式;(2)当摄氏温度为-5℃时,求华氏温度为多少?(3)当华氏温度为59℉时,求摄氏温度为多少?23.(8分)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?进价(元/个)售价(元/个)24.(8分)如图,正方形网格中的△ABC,若小方格边长为1,格点△ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的三角形A1B1C1;(3)判断△ABC的形状,并求出△ABC的面积。篮球8095排球5060第4页25.(7分)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);(2)甲的速度是km/h,乙的速度是km/h;(3)甲出发多少小时两人恰好相距5km?26.(7分)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:abc(2)当a1,b1时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使△ABC为等腰三角形,①写出一个满足条件的在x轴上的点的坐标:;写出一个满足条件的在y轴上的点的坐标:;满足条件的在y轴上的点有个.222第5页27.(10分)科技小组进行了机器人行走性能试验,如图1,甲、乙两机器人分别从M,N两点同时同向出发,经过7分钟,甲,乙同时到达P点,乙机器人始终以60米/分的速度行走,图2是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图形,回答下列问题:(1)M,N两点之间的距离是米;(2)求M,P两点之间的距离(写出解答过程);(3)求甲前2分钟的速度(写出解答过程);(4)若前3分钟甲的速度不变,图2中,点F的坐标为;(5)若线段FG∥x轴,则此段时间内甲的速度为米/分。第6页